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Abstract
Many microbial and plant-derived metabolites contribute to the production of inflammatory mediators and the
expression of pro-inflammatory molecules. Ophiobolin A (OPA) is a fungal secondary metabolite produced by
Bipolaris species. The aim of our study was to examine the acute effects of this compound on inflammatory
processes.

Male Wistar rats were treated with 5% ethanol, 0.01 mg/kg OPA, 0.1 mg/kg OPA and 1.0 mg/kg OPA per os.
After 24 h of the administrations, inflammatory mediators such as interleukin-6 (IL-6), tumour necrosis factor-
alpha (TNF-a) and myeloperoxidase (MPO) enzyme as well as heme oxygenase (HO) activity were measured in
both plasma and cardiac tissue, along with serum alanine aminotransferase (ALT) and aspartate aminotransfer-
ase (AST). We found that OPA caused a significant elevation in the concentrations of IL-6 and TNF-a, increased
MPO activity and decreased HO enzyme activity in the plasma. While OPA induces inflammation in the plasma,
it did not change the level of inflammatory mediators in the cardiac tissue and the concentrations of serum ALT
and AST. Our findings indicate that rapid release of inflammatory mediators by OPA promotes systemic
inflammation. However, this acute OPA treatment does not show toxic effects on the cardiac tissue and the
concentrations of liver enzymes.
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Introduction

Inflammation is a complex set of interactions among

soluble factors (cytokines) and cells that can arise in

both tissue and plasma in response to infectious, toxic

or traumatic injury.1,2 The pro-inflammatory cyto-

kines, such as tumour necrosis factor-alpha (TNF-a),

interleukin-1-beta (IL-1�) and IL-6, are involved in

the initiation and amplification of the inflammatory

process. TNF-a and IL-1� act in synergy to enhance

IL-6 secretion and may significantly contribute to the

overall systemic inflammation.3 Along with the

effects of cytokines, myeloperoxidase (MPO) activ-

ity, which synthesized and secreted by neutrophils, is

determined as an inflammatory biomarker. The

plasma or tissue concentrations of MPO are markers
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of the neutrophil proliferation/infiltration and severity

of inflammation.4

It has been reported that heme oxygenase (HO)

plays a central role in oxidative stress and inflamma-

tory processes. The upregulation of the HO enzyme

pathway has significant antioxidant and anti-

inflammatory effects in both the circulation and tissue

injury. HO enzyme system serves a vital metabolic

function as the rate-limiting step in the degradation

of heme to generate carbon monoxide (CO), iron and

biliverdin, which is converted to bilirubin. HO-1 end

products generated from heme degradation may mod-

ulate inflammation. Cumulative evidence suggests

that CO and bilirubin have anti-proliferative and

anti-inflammatory effects via downregulate the pro-

duction of pro-inflammatory cytokines (e.g. IL-6, IL-

1� and TNF-a) and upregulate the anti-inflammatory

cytokines (e.g. IL-10).5,6 The strong interaction

between HO enzyme and pro-inflammatory cytokines

(which play a pivotal role in pathological conditions)

can be major factors to promote systemic

inflammation.

Natural compounds, including plant and microbial

secondary metabolites, can directly influence the pro-

duction of inflammatory mediators as well as the

expression of transcription factors and key pro- or

anti-inflammatory molecules.7,8

Ophiobolins are sesterterpenoid-type secondary

metabolites, a group of pentaprenyl terpenoid com-

pounds whose structures are derivable from geranyl-

farnesyl diphosphate (C 25). They are characterized

by a unique structure of a tricyclic 5-8-5 ring system

derived from head to tail linkages of five isoprene

units. Ophiobolins are produced by some phytopatho-

genic fungi, mainly the members of the genus Bipo-

laris (Cochliobolus)9 and some species of the genera

Drechslera (Pyrenophora), Aspergillus (Emericella,

Neosartorya) and others.10 Ophiobolin A (OPA) was

the first member of the group to be isolated and char-

acterized in the mid-1960s.9 Ophiobolins are known

to be effective phytotoxins, and a large number of

studies have described the action of OPA in

plants.11,12 Their effect is less known in mammals,

though there are some studies also in this field, for

example, the biological effects of OPA on human

cancer cells13–15 and boar spermatozoa15 were

described.

In our present study, we aimed to characterize

OPA-mediated acute systemic changes on the inflam-

matory process. Thus, we tested the effect of different

doses (0.01, 0.1 and 1.0 mg/kg) of OPA on

inflammatory mediators (IL-6, TNF-a, MPO activity

and HO activity) in rat plasma. To clarify the potential

cytotoxic effects of OPA, we tested it on both cardiac

tissue and liver. The alanine aminotransferase (ALT)

and aspartate aminotransferase (AST) markers were

measured to analyse the influence of OPA on

hepatotoxicity.

Methods

Animals and experimental design

All manipulations were performed in accordance with

the standards of the European Community guidelines

on the care and use of laboratory animals and had

been approved by the Institutional Ethics Committee

at the University of Szeged.

All the animals were housed in a temperature-

controlled facility (23�C) maintained on a 12/12 h

of light/dark cycle with food and water provided ad

libitum.

Male Wistar rats (weight: 250–350 g; Toxi-Coop

Zrt., Dunakeszi, Hungary) were randomly divided

into four groups: 5% ethanol vehicle control (n ¼ 18),

0.01 mg/kg OPA (n¼ 18), 0.1 mg/kg OPA (n¼ 18) and

1.0 mg/kg OPA (n ¼ 18).

Twenty-four hours after vehicle (once, 1.0 mL of

5% ethanol, p.o.) or OPA (once, 0.01 mg/kg, 0.1 mg/

kg or 1.0 mg/kg in 1.0 mL of 5% ethanol, per os [p.o.])

treatment, the animals were killed and blood sample

as well as the cardiac left ventricle (LV) was collected

for analyses.

Measurement of plasma and cardiac
LV IL-6 and TNF-a concentrations

Plasma samples were centrifuged at 2000 � gmax for

20 min at 4�C. The cardiac LV samples were homo-

genized (Ultra-Turrax T25, IKA-Labortechnik, 2 �
10 s on ice) in 2 mL modified Greenburger buffer

(300 mM sodium chloride, 15 mM TRIS, 2 mM mag-

nesium chloride (MgCl2), 2 mM Triton X-100, 0.2

mM phenylmethanesulfonyl fluoride, 100 ng/mL leu-

peptin, 100 ng/mL aprotinin, 10 mg/L trypsin inhibi-

tor and 100 ng/mL pepstatin-A). Tissue homogenates

were sonicated for 10 s and centrifuged at 15000 � g

for 15 min. The plasma and cardiac IL-6 and TNF-a
levels were determined by means of quantitative

enzyme-linked immunosorbent assays (ELISA)

according to the manufacturer’s instructions (Quanti-

kine rat IL-6 and TNF-alpha Elisa kit; R&D Systems,

Minneapolis, Minnesota, USA). Optical density was
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measured at 450 nm (Benchmark Microplate Reader;

Bio-Rad, Budapest, Hungary). Plasma IL-6 and TNF-

a were expressed as pictogram per millilitre plasma

and cardiac values were defined as pictogram per

milligram protein.

Plasma and cardiac LV MPO activity

Plasma samples were centrifuged at 2000 � gmax for

20 min at 4�C. The cardiac LV tissues were homo-

genized twice for 30–30 s (Ultra Turrax T25, 13 500 r/

min) in ice-cold phosphate buffer (50 mM, pH 6.0),

freeze-thawed three times and then centrifuged

(15,000 � g for 20 min at 4�C). A 12-mL aliquot of

the plasma or cardiac supernatant was mixed with

280 mL of phosphate buffer (50 mM, pH 6) contain-

ing 0.167 mg/mL of O-dianisidine dihydrochloride,

and the reaction was started with 10 mL of 0.03%
hydrogen peroxide and assayed spectrophotometri-

cally at 490 nm (Benchmark Microplate Reader;

Bio-Rad) after 90 s of shaking. Plasma MPO activity

was expressed as milliunit per millilitre plasma and

cardiac values were expressed as milliunit per milli-

gram protein.

Plasma and cardiac LV HO activity

Plasma samples were centrifuged at 2000 � g for 20

min at 4�C. The cardiac LV tissues were homoge-

nized (Ultra Turrax T25; 13 500 r/min; 2 � 30 s) in

ice-cold 10 mM N-2-hydroxyethylpiperazine-2-

ethanesulfonic acid, 32 mM sucrose, 1 mM dithiotrei-

tol, 0.1 mM ethylene diaminetetraacetic acid diso-

dium salt dihydrate, 10 mg/mL trypsin inhibitor, 10

mg/mL leupeptin and 2 mg/mL aprotinin, at pH 7.4.

The cardiac supernatant was collected by centrifuga-

tion at 15,000 � g for 20 min at 4�C. The reaction

mixture contained the following components in a final

volume of 1.5 mL: 2 mM glucose-6-phosphate, 0.14

U/mL glucose-6-phosphate dehydrogenase, 15 mM

hemin, 120 mg/mL rat liver cytosol (as a source of

biliverdin reductase), 2 mM MgCl2 � 6 H2O, 100

mM KH2PO4 and 150 mL of plasma or cardiac LV

supernatant. To start the reaction, 100 mL reduced

form of nicotinamide adenine dinucleotide phosphate

(150 mM) was added to the samples and they were

then incubated in the dark at 37�C for 60 min. The

reaction was stopped by placing the samples on ice.

The bilirubin formed was calculated from the differ-

ence between the optical densities obtained at 464 and

530 nm. Bilirubin solution was used as standard

(58.47 mg/mL; 10 mM). One unit of HO activity was

defined as the amount of bilirubin (nM) produced per

hour per millilitre plasma or the amount of bilirubin

(nM) produced hour per milligram protein.

Determination of serum ALT and AST

Serum samples were centrifuged in 2000 � g for 20

min at 4�C. Serum levels of ALT and AST were

determined by ELISA according to the manufactur-

er’s instructions (SunRed Biotechnology, Shanghai,

China) and were expressed as pictogram per millilitre

serum.

Determination of protein concentration

Using a commercial protein assay kit (Bio-Rad), ali-

quots (20 mL) of the diluted samples (15� or 25�
with distilled water) were mixed with 980 mL of dis-

tilled water with 200 mL Bradford reagent added to

each sample. After mixing and following 10 min incu-

bation, the samples were assayed spectrophotometri-

cally at 595 nm. Protein level was expressed as

milligram protein per millilitre.

OPA purification

OPA was purified by a multistep high-performance

liquid chromatography (HPLC) purification process

after an ethyl acetate extraction of the culture super-

natant of Bipolaris oryzae SZMC 13003 strain

according to the description of Bencsik et al. (http://

www.mdpi.com/2072-6651/6/9/2857). Briefly, the

concentrated organic phase was first loaded onto an

ECO 15/450V3 K glass column (YMC, Germany)

filled with Kieselgel 60 (Merck, Hungary) using ethyl

acetate/hexane (5:5, V/V, 2 mL/min) as mobile phase,

and the OPA contained fractions were pooled and

injected onto a reverse-phase Serva ODS (10 � 450

mm, 5 mm) HPLC column with water/acetonitrile

(3:7, V/V, 3 mL/min) eluent system to achieve OPA

with the purity of up to 96%. During the purification

procedure, the identification, quantitation and purity

of OPA were tested by analytical HPLC measure-

ments at a wavelength of 230 nm.

Statistical analysis

All data are presented as means + standard error of

mean. Statistical difference between two groups was

analysed with the two-tailed Student’s t-test. p Values

less than 0.05 were considered significant.
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Results

Plasma IL-6 and TNF-a concentrations

The plasma level of IL-6 was increased after treatment

with OPA. The administration of 1.0 mg/kg of OPA led

to a significant increase compared to the vehicle con-

trol group (55.8 + 5.97 vs. 77.9 + 5.51 pg/mL

plasma, *p < 0.05). Data are presented in Figure 1.

Similarly to the IL-6 values, the TNF-a level reached

the highest concentration at 1 mg/kg OPA and showed a

significant difference compared to the vehicle control

(5.59+ 0.55 vs. 7.41+ 0.57 pg/mL plasma, *p < 0.05)

and to 0.1 mg/kg OPA-treated (5.82 + 0.26 pg/mL

plasma, pþ < 0.05) groups. Data are shown in Figure 2.

Plasma MPO and HO enzyme activity

The increasing doses of OPA caused a dose-

dependent elevation in plasma MPO activity in each

group compared to the vehicle control animals (vehi-

cle control: 45.3 + 2.04 mU/mL plasma, *p < 0.05;

0.01 mg/kg OPA: 53.3 + 2.86 mU/mL plasma, *p <

0.05; 0.1 mg/kg OPA: 56.9 + 2.22 mU/mL plasma,

**p < 0.01 and 1.0 mg/kg OPA: 59.2 + 2.5 mU/mL

plasma, **p < 0.01). Data are shown in Figure 3.

After 24 h of treatment with 1.0 mg/kg OPA, we

observed a significant decrease in HO enzyme activ-

ity compared to the vehicle control group (74.1 +
9.03 vs. 48.3 + 1.77 nM bilirubin/h/mL plasma, *p

< 0.05). In addition, we also observed significant dif-

ferences between 1.0 mg/kg and lower dose OPA-

treated groups (0.1 mg/kg OPA: 55.8 + 1.42 nM

bilirubin/h/mL plasma, þp < 0.05 and 0.01 mg/kg

OPA: 63.4 nM bilirubin/h/mL plasma, aap < 0.01).

Data are shown in Figure 4.

Cardiac LV IL-6 and TNF-a concentrations

As shown in Figures 5 and 6, OPA treatment did not

cause significant changes in IL-6 and TNF-a concen-

trations in cardiac LV.

Cardiac LV MPO and HO activity

The results show that administration of OPA did not

produce changes in the activity of MPO and HO

enzymes in cardiac LV. Data are shown in Figures 7

and 8.

Figure 1. The concentrations of plasma IL-6 (expressed as
pg/mL plasma) after 24 h of treatment with 0.01, 0.1 and 1
mg/kg OPA. Data are means + SEM, n ¼ 5. Statistical
significance: *p < 0.05 relative to the vehicle control group.
OPA: ophiobolin A; IL-6: interleukin-6; SEM: standard error
of mean.

Figure 2. The plasma levels of TNF-a (expressed as pg/mL
plasma) in vehicle control and OPA-treated groups. Data
are means + SEM, n ¼ 6–9. Statistical significance: *p <
0.05 relative to the vehicle control group; þp < 0.05 a
significant difference between animals treated with 0.1 and
1 mg/kg OPA. TNF-a: tumour necrosis factor-alpha; OPA:
ophiobolin A; SEM: standard error of mean.
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Serum ALT and AST concentrations

No differences in serum ALT and AST concentrations

in response to increasing doses of OPA were observed

between vehicle control and OPA-treated animals.

Data are shown in Figures 9 and 10.

Discussion

Recently, much interest has been generated for a wide

range of compounds from microbial sources with

reports demonstrating their role in the modulation of

inflammatory responses. Among these, several micro-

bial metabolites show potent anti-inflammatory

action;16 some derivatives contribute to chronic

inflammation and inflammatory diseases.

The aim of our study was to clarify the effects of

OPA, a phytotoxic sesterterpenoid of fungal origin, on

the modulation of pro-inflammatory cytokines such as

IL-6 and TNF-a. Furthermore, its effect on the inflam-

matory biomarker MPO activity as well as on the

activation of HO was also investigated.

In the current investigation, OPA was shown to

promote the inflammatory processes. We demon-

strated that administrations of 1.0 mg/kg of OPA led

to significant increases in the plasma levels of IL-6.

Similarly to the IL-6, the TNF-a level reached the

highest concentration at 1 mg/kg OPA. All these

inflammatory cytokines play a critical role in control-

ling many inflammatory responses.17 In a previous

study, Nagashima et al. observed elevation of serum

IL-6 level in 24-h rubratoxin B-treated mouse model.18

Dugyala et al. found that TNF-a plays a role in the

mechanism of fumonisin B toxicity.19 Gene expression

of inflammatory cytokine leads to another stage of

the inflammatory cascade and facilitates the recruit-

ment of effector cells such as monocytes and neutro-

phils to the site of disturbance. Neutrophils create a

cytotoxic environment by releasing noxious chemicals.

MPO is a hemoprotein that is stored in azurophilic

granules of polymorphonuclear neutrophils and

macrophages. MPO catalyses the conversion of chlor-

ide and hydrogen peroxide to hypochlorite and is

secreted during inflammatory condition.20 The ele-

vated MPO concentrations of both plasma and tissue

have been used as a marker of polymorphonuclear leu-

kocytosis in sepsis and inflammation.21–23 Our results

show that a single treatment with increasing doses of

Figure 3. Changes in plasma MPO activity (expressed as
mU/mL plasma) after 24 h of OPA treatment. Data are
means + SEM, n ¼ 7–9. Statistical significance: *p < 0.05
and **p < 0.01 relative to the vehicle control group. MOP:
myeloperoxidase; OPA: ophiobolin A; SEM: standard error
of mean.

Figure 4. Effects of OPA treatment on plasma level of HO
activity (expressed as nM bilirubin/h/mL plasma) after 24 h.
Data are means + SEM, n¼ 6–7. Statistical significance: *p <
0.05 relative to the vehicle control group; þp < 0.05 a sig-
nificant difference between animals treated with 0.1 and 1.0
mg/kg OPA; aap < 0.01 a significant difference between ani-
mals treated with 0.01 and 1.0 mg/kg OPA. OPA: ophiobolin
A; HO: heme oxygenase; SEM: standard error of mean.
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Figure 5. The concentrations of IL-6 (expressed as pg/mg
protein) in the cardiac LV after 24 h of treatment with 0.01,
0.1 and 1.0 mg/kg OPA. Data are means + SEM, n ¼ 6–8.
LV: left ventricle; OPA: ophiobolin A; IL-6: interleukin-6;
SEM: standard error of mean.

Figure 6. The levels of TNF-a (expressed as pg/mg pro-
tein) in the cardiac LV of vehicle control and OPA-treated
animals. Data are means + SEM, n¼ 6–8. OPA: ophiobolin
A; TNF-a: tumour necrosis factor-alpha; LV: left ventricle;
SEM: standard error of mean.

Figure 7. MPO activity (expressed as mU/mg protein) in
the cardiac LV of vehicle control and OPA-treated animals.
Data are means + SEM, n ¼ 7–8. OPA: ophiobolin A; LV:
left ventricle; MPO: myeloperoxidase; SEM: standard error
of mean.

Figure 8. HO activity (expressed as nM bilirubin/h/mg
protein) in the cardiac LV of vehicle control and OPA-
treated animals. Data are means + SEM, n ¼ 7. OPA:
ophiobolin A; LV: left ventricle; HO: heme oxygenase; SEM:
standard error of mean.
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OPA caused a dose-dependent increase in the plasma.

The administration of 1 mg/kg OPA induced 75%
increase in the MPO activity. MPO is linked to both

inflammation and oxidative stress by catalysing the

formation of oxidizing agents.

It has been reported that HO plays a central role in

regulating the levels of intracellular heme by catalysing

the oxidative degradation of heme and by generating

CO, biliverdin and bilirubin.24 Three isoforms of HO

have been described: an inducible isoform, HO-1 and

two constitutively expressed isoforms, HO-2 and

HO-3. In animal and human studies, HO-1 may affect

many pathways and cytokines. During physiological

processes, HO activity plays a role in the inhibition

of apoptosis and oxidative processes, with significant

reductions in inflammatory events including produc-

tion of inflammatory cytokines. HO-1 and its products

such as CO, biliverdin/ bilirubin and free iron may

modulate inflammation.24 CO can downregulate the

production of pro-inflammatory cytokines (e.g. IL-1�,

IL-6 and TNF-a). These effects were attributed to

alterations of mitogen-activated protein kinase

(MAPK) activities, including p38 MAPK and c-Jun

kinase.25,26 Furthermore, HO-1/CO activation downre-

gulates the inflammatory response by blocking the

release of NO from inducible nitrogen monoxide

synthase and expression of the granulocyte macro-

phage colony-stimulating factor from macrophages

and smooth muscle cells.27 Jung et al. reported that

CO can modulate the activation of the NLRP3 inflam-

masome, which regulates the production of pro-

inflammatory cytokines.28 Devey et al. demonstrated

that HO-1 inhibits the production of TNF-a and IL-6 in

the liver.29 In another model, Kapturczak et al. showed

that HO-1 deficiency leads to increased production of

pro-inflammatory cytokines.30 Our data indicate that

treatment with the fungal phytotoxin, OPA, increased

the concentrations of IL-6, TNF-a and MPO inflam-

matory mediators in blood plasma. The plasma HO

activity showed a significant reduction 24 h after

administrations of OPA. In agreement with previous

observations, our results show that systemic inflamma-

tion suppresses the level of HO.

Elevated circulating concentrations of pro-

inflammatory cytokines and adhesion molecules sug-

gest that inflammatory processes are occurring sys-

temically and play a role in the development of

inflammatory disorders, including allergic reactions,

arthritis, cancer, atherosclerosis and ischemic heart

disease.31,32 Although, many studies have detected a

positive correlation between inflammation and cardi-

ovascular diseases in different models, we did not

observe inflammation-related changes in cardiac tis-

sue after 24 h of acute OPA administrations. Animal

Figure 9. The concentrations of serum ALT (expressed as
mU/mL serum) in vehicle control and OPA-treated groups.
Data are means + SEM, n ¼ 11–12. ALT: alanine amino-
transferase; OPA:ophiobolinA; SEM: standarderrorof mean.

Figure 10. The levels of serum AST (expressed as mU/mL
serum) in vehicle control and OPA-treated groups. Data are
means + SEM, n ¼ 5–12. AST: aspartate aminotransferase;
OPA: ophiobolin A; SEM: standard error of mean.
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studies on TNF-a and development of atherosclerosis

have produced mixed results. Inhibition of TNF-a in

apoE-deficient mice resulted in significant decrease

of atheromatous lesions33 in wild-type animals, it pro-

duced no improvements.34 In another inflammation-

related disease model, Bury et al. revealed that this

fungal metabolite, OPA, displays in vivo antitumor

activity in mammalian.35

Since we obtained that OPA treatment led to sys-

temic inflammatory changes measured in plasma, our

aim was to clarify if there is any potential toxic effect

of OPA on both liver and cardiac tissue. In addition to

inflammatory changes, we found a significant HO

activity reduction in plasma. The decrease in circulat-

ing HO enzyme activity promotes oxidative processes

which can trigger hepatic damage and modulate path-

ways that control normal biological functions.36,37

To analyse the potential hepatotoxic effects of

OPA, ALT and AST markers were also measured. It

has been demonstrated that a great number of toxins,

microbial metabolites and natural products could

cause liver damage. Transaminases are located in

liver cells and leak out into the circulation when liver

cells are injured. Ozer et al. reported that serum/

plasma ALT and AST biomarkers in humans and rats

have potential to be utilized as bridging markers to

monitor liver injury in early clinical trials. The ALT is

a more specific indicator of liver inflammation than

AST, which is also found in the heart and skeletal

muscle.38 Hepatic dysfunction accompanied by ele-

vated ALT and AST levels show a complex relation-

ship with cardiac diseases.39 In our study, we did not

observed changes in the serum ALT and AST concen-

trations after 24 h of treatment with 0.01, 0.1 and 1

mg/kg OPA.

In summary, the current report highlights the acute

role of OPA in systemic and cardiac-specific inflam-

matory responses. While the inflammation-inducing

effects mediated by OPA in the plasma seem related

to the activation of inflammatory markers (e.g. IL-6,

TNF-a and MPO) and the suppression of HO enzyme,

in the cardiac tissue, OPA treatment did not cause

changes in the inflammatory responses. Furthermore,

OPA did not show cytotoxic effects in the serum ALT

and AST levels.
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