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Recent studies demonstrated a reduced expression of Fragile XMental Retardation Protein (FMRP), an RNAbind-
ing protein and translation regulator, in the brain and peripheral lymphocytes of patients with schizophrenia.
Low FMRP levels may be related to impaired neurodevelopmental processes and synaptic plasticity. Here, we
studied the relationship between peripheral FMRP level, visual perception (contrast sensitivity, perceptual inte-
gration, motion/form perception), and neuropsychological functions in schizophrenia as measured with the Re-
peatable Battery for the Assessment of Neuropsychological Status (RBANS). Results revealed that patients with
schizophrenia displayed lower FMRP levels in peripheral lymphocytes as compared to control individuals. We
found significant correlations between FMRP levels and contrast sensitivity at low spatial and high temporal fre-
quencies, perceptual integration, and motion perception. The relationship between FMRP level and neuropsy-
chological functions was less pronounced than that seen in the case of visual perception, with the greatest
effect for RBANS attention. FMRP level was not related to contrast sensitivity at high spatial and low temporal
frequencies and form perception. This pattern of data is reminiscent to that observed in patients with Fragile X
Syndrome (FXS). These results suggest that FMRP may be implicated in the pathogenesis of schizophrenia, pos-
sibly via the regulation of neurodevelopment, plasticity, GABA-ergic, and glutamatergic neurotransmission.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Research during the past decades revealed a characteristic and sig-
nificant perceptual and neurocognitive dysfunction in schizophrenia.
Extensive evidence suggests that deficits in executive functions, atten-
tion,memory, social cognition, and visual perceptionmarkedly contrib-
ute to the psychosocial outcome of the illness (Roder & Medalia, 2010;
Sharma & Harvey, 2000). However, the neurobiological mechanisms
of neurocognitive and perceptual dysfunctions have not been clarified,
and there is no satisfying treatment strategy.

Recently, we found preliminary evidence that molecular mecha-
nisms implicated in intellectual and developmental disabilities may
be related to cognition in schizophrenia, with a special reference to
Fragile X Syndrome (FXS) (Kovács et al., 2013). In FXS, the Fragile X
agile X mental retardation pro-
ric acid; HSD, honestly signif-
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Mental Retardation Protein (FMRP) is absent because of an extensive
nucleotide triplet expansion, leading to neurodevelopmental and
cognitive anomalies. FMRP can be detected in the soma and dendritic
spines of neurons serving as a translational suppressor for genes
encoding proteins essential for synaptic plasticity (Bear et al., 2008;
O'Donnell & Warren, 2002; Rousseau et al., 2011). There is increasing
evidence that altered expression of FMRP and its mRNA characterizes
various disorders, including premature ovarian insufficiency, fragile
X-associated tremor/ataxia syndrome, autism, mood disorders, and
schizophrenia (Bourgeois et al., 2009; Fatemi et al., 2010; Fatemi &
Folsom, 2011; Hagerman et al., 2010). Fatemi et al. (2010) found re-
duced FMRP expression in the lateral cerebellum of patients with
schizophrenia and mood disorders. We confirmed these findings in
peripheral lymphocytes of schizophrenia patients (Kovács et al.,
2013). In addition, low FMRP expression predicted earlier illness
onset and decreased IQ, which may indicate the key role of FMRP in
neurodevelopment and cognition (Kovács et al., 2013).

In the present study, we aimed to extend these findings by investi-
gating the cognitive and perceptual correlates of reduced peripheral
FMRP in schizophrenia. We assessed neuropsychological functions and
different aspects of visual perception. First, we examined immediate
and delayed memory, attention, language, and visuospatial functions
using the Repeatable Battery for the Assessment of Neuropsychological
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Table 1
Demographic and clinical characteristics of the participants.

Schizophrenia
(n = 50)

Control
(n = 50)

Male/female 31/19 31/19
Age (years) 42.7 (9.2) 44.1 (9.0)
Age of illness onset (years) 23.6 (6.6) –

PANSS positive 21.2 (6.4) –

PANSS negative 19.8 (7.5) –

PANSS general 49.7 (10.0) –

Antipsychotics (chlorpromazine-equivalent, mg/day) 455.0 (185.4) –

Data are mean (standard deviation). PANSS — Positive and Negative Syndrome Scale.
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Status (RBANS) (Randolph et al., 1998). Second, we assessed multiple
levels of visual perception as delineated in the Cognitive Neuroscience
Treatment Research to Improve Cognition in Schizophrenia (CNTRICS)
project (Butler et al., 2008, 2012). Specifically, we studied visual con-
trast sensitivity, perceptual integration, and motion/form perception.
Our previous results indicated that in healthy volunteers contrast sensi-
tivity for low spatial and high temporal frequency gratings (rough reso-
lution and dynamic changes of stimuli) and motion perception were
associated with FMRP expression, whereas contrast sensitivity for high
spatial frequency/static gratings (fine resolution of stimuli) and form
perception were not (Kéri & Benedek, 2011, 2012) (Fig. 1). This is con-
sistent with the eminent role of FMRP in the development of the
magnocellular retino–geniculo–striatal visual pathways (Kogan et al.,
2004; Zangenehpour et al., 2009). Therefore, we hypothesized that re-
duced FMRP expression would be associated with an impaired process-
ing of low spatial/high temporal frequency gratings and coherently
moving patterns in patients with schizophrenia. We also investigated,
for the first time, the possible relationship between FMRP expression
and perceptual integration.
2. Materials and methods

2.1. Participants

We enrolled 50 patients with schizophrenia and 50 healthy controls
with a negative family history for psychotic disorders at the National
Institute of Psychiatry and Addictology, Budapest and Bács-Kiskun
CountyHospital, Kecskemét, Hungary. None of the patientswas included
in the Kovács et al.'s (2013) study. The diagnosiswas based on structured
clinical interviews (First et al., 1996). We had access to the complete
medical record of the patients. Patients with schizophrenia received an-
tipsychotic medications at the time of testing (risperidone, olanzapine,
quetiapine, haloperidol, aripiprazole, zuclopenthixol, amisulpride).
We converted the daily dose of antipsychotics to chlorpromazine-
equivalent units (Woods, 2003). All patients received the Positive and
Negative Syndrome Scale (PANSS) (Kay et al., 1987). All participants
had normal or corrected-to-normal visual acuity. The clinical and demo-
graphic data are depicted in Table 1. The study was done in accordance
with the Declaration of Helsinki. We obtained written informed consent
Fig. 1. Stimuli used in psychophysical tests of visual perception. A. Sinusoidal
luminance-contrast gratings with different spatial frequencies and contrasts. Gratings
were modulated using counterphase flickering (temporal frequency, Hz). B. Gabor
patches with different target–flanker distances (target: low-contrast central patch;
flankers: high-contrast lateral patches). C. Glass patterns used for form and motion co-
herence measurements.
fromeachparticipant. The studywas approved by the institutional ethics
committee.

2.2. Neuropsychological assessment

We used the RBANS comprising 12 tests classified according to five
index scores (Gold et al., 1999; Juhász et al., 2003; Randolph et al.,
1998). Each index score is standardized (normal mean: 100, SD = 15
based on a normative study group of 200 healthyHungarian volunteers,
20–80 years of age). The RBANS index domains and tests are as follows:
(1) immediate memory (word list learning [10 words repeated in four
trials], story recall in two trials); (2) language (confrontation naming
of 10 pictures, category fluency); (3) visuospatial functions (figure
copy, line orientation); (4) attention (digit span, digit-symbol coding);
and (5) delayed memory (delayed recall of the story, complex figure,
andword list, recognition of the word list). The RBANS has two psycho-
metrically matched forms. In this study, we used version “A”.

2.3. Visual perception

2.3.1. Stimulus presentation and response collection
Weused a VP2765-LED-27″monitor (ViewSonic,Walnut, CA; refresh

rate: 60 Hz, resolution: 1920 × 1080 pixel; viewing distance: 50 cm;
output luminance: 65 cd/m2; background luminance: 5 cd/m2) con-
trolled by a Dell XPS workstation. All experimental procedures have
been extensively described in previous publications, and here only brief
descriptions are provided with references to methodological details.

2.3.2. Contrast sensitivity
We undertook these measurements to evaluate early-stage,

low-level visual information processing, including pathways stemming
from the retina and projecting to the lateral geniculate nucleus and then
to the primary visual cortex. We used two types of sinusoidal
luminance-contrast gratings: stimuli with low spatial frequency (SF)
and high temporal frequency (TF) (0.3 cycle/degree and 18 Hz, respec-
tively) and stimuli with high SF and low TF (10 cycles/degree and 1 Hz,
respectively) (Fig. 1a). Participants gave oral responses indicating
whether they saw the grating or not, and the experimenter entered
the responses on the keyboard. If the participant was not able to detect
the grating, the contrast was increased and vice versa (reversals) using
a staircase procedure. The contrast thresholdwas the average of the last
12 reversals. Contrast sensitivity was the inverse of contrast threshold
(Halász et al., 2013; Kéri & Benedek, 2009; Kogan et al., 2004).

2.3.3. Perceptual integration
This procedure tests how early visual areas are able to bind and as-

semble basic perceptual details to create contours (Kéri et al., 2005a,b;
Must et al., 2004; Polat & Sagi, 1993). Stimuli were Gabor patches
(SF: 6.7 cycles/degree). There was a central Gabor patch (target)
and two high-contrast flankers (Fig. 1b). The distance between target
and flankers was 1 or 3λ (λ: reciprocal of SF). Trials without flankers
were also presented. We measured contrast threshold for the target
Gabor patch using a staircase procedure and determined threshold
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changes at each target-to-flanker distance relative to targets
presented without flankers (Kéri et al., 2005a,b; Must et al., 2004;
Polat & Sagi, 1993).
2.3.4. Motion and form perception
We used Glass pattern stimuli to determinemotion and form coher-

ence threshold (Glass, 1969; Kéri & Benedek, 2012; McKendrick et al.,
2006) (Fig. 1c). During the measurement of form coherence threshold,
coherent dots were replaced with randomly positioned noise dots
(e.g., 50% coherence means that half of the dots were positioned con-
centrically, whereas the other half of the dots was placed randomly).
During the measurement of motion coherence threshold, a fraction of
randomly chosen dots moved in the same signal direction, while all
other dots moved in random (9 min arc/frame, 3°/s). Wemeasured co-
herence thresholds (% of concentrically positioned and coherentlymov-
ing dots necessary for stimulus detection) using a staircase procedure
(Kéri & Benedek, 2012; McKendrick et al., 2006).
2.4. Measurement of FMRP

For the quantitative evaluation of FMRP level from peripheral
blood lymphocytes, we followed the protocol of Iwahashi et al.
(2009), an enzyme-linked immunosorbent assay (ELISA) method,
which provides an accurate and standardized measurement of FMRP.
2.5. Statistical analysis

We used STATISTICA 11 (StatSoft, Inc., Tulsa) and Prism 6 (GraphPad,
Inc., La Jolla) for data analysis. After the analysis of data distribution with
Kolmogorov–Smirnov tests, we used analyses of variance (ANOVAs)
followedby TukeyHonestly SignificantDifference (HSD) tests.Where ap-
propriate, measureswere comparedwith two-tailed t test.We calculated
Cohen's effect size values (d). To investigate the relationship between
FMRP and neuropsychological and perceptual measures, we calculated
Pearson's product moment correlation coefficients and used median-
split analyses. Multiple comparisons were corrected according to the
Bonferroni method. The level of statistical significance was α b 0.05.
Fig. 2. FragileXMental RetardationProtein (FMRP) levels inpatientswith schizophrenia and
healthy control volunteers. FMRP levels were calculated relative to a reference standard lym-
phocyte extract (Iwahashi et al., 2009). The dots show individual values, whereas the hori-
zontal lines indicate mean in each group (for statistical details, see Results Section 3.1).
3. Results

3.1. Peripheral FMRP level

Patients with schizophrenia displayed a significantly reduced level
of FMRP relative to controls (schizophrenia: 79.8 (SD = 59.7); con-
trols: 162.1 (SD = 74.6); t(98) = 6.10, p b 0.001) (Fig. 2).
3.2. Neuropsychological performance

The results are depicted in Table 2. There was a generalized neuro-
psychological deficit in schizophrenia, which was the most pro-
nounced in the case delayed memory. Language was relatively less
affected.
3.3. Contrast sensitivity

The ANOVA indicated significant main effects of group (schizophrenia
vs. controls) (F(1,98) = 93.9; p b 0.001; η2 = 0.49) and stimulus type
(low SF/high TF vs. high SF/low TF) (F(1,98) = 126.14, p b 0.001; η2 =
0.56). There was a two-way interaction between group and stimulus type
(F(1,98) = 5.78, p b 0.05; η2 = 0.06). Patients with schizophrenia
showed reduced contrast sensitivity for both stimulus types as compared
with control individuals (Tukey HSD, p b 0.001). The two-way interaction
appeared because the impairment was more severe in the case of stimuli
with low SF/high TF relative to high SF/low TF (Table 3).
3.4. Perceptual integration

The ANOVA revealed significant main effects of group (schizophrenia
vs. controls) (F(1,98) = 5.61; p b 0.05; η2 = 0.05) and stimulus type
(1λ vs. 3λ target–flanker distance) (F(1,98) = 554.87, p b 0.001; η2 =
0.85). There was a significant two-way interaction between group and
stimulus type (F(1,98) = 12.34, p b 0.01; η2 =0.11). The post-hoc anal-
ysis revealed less negative values at 3λ target–flanker distance in patients
with schizophrenia relative to controls (p b 0.001). Patients and control
showed similar values at 1λ target–flanker distance (p N 0.5) (Table 3).
3.5. Motion and form perception

There was a significant main effect of group (F(1,98) = 46.81;
p b 0.001; η2 = 0.32). The main effect of stimulus type (motion vs.
form coherence) was not significant (p N 0.5). We found a significant
two-way interaction between group and stimulus type (F(1,98) = 6.93;
p b 0.05; η2 = 0.07). Patients with schizophrenia had higher coherence
thresholds than control individuals for form (p b 0.05) and motion
(p b 0.001). As shown in Table 3, elevated threshold in schizophrenia pa-
tients, relative to control volunteers,was greater formotion than for form.
Table 2
RBANS results.

Schizophrenia
(n = 50)

Controls
(n = 50)

df t p d

Attention 80.9 (17.1) 96.3 (15.3) 98 4.73 b0.001 0.86
Immediate memory 80.3 (15.6) 98.7 (14.3) 98 6.16 b0.001 1.05
Delayed memory 77.7 (13.8) 99.1 (13.9) 98 7.73 b0.001 1.22
Visuospatial functions 82.6 (15.9) 95.9 (14.4) 98 4.36 b0.001 0.81
Language 89.2 (17.4) 98.1 (18.2) 98 2.50 0.01 0.49

Data are mean (standard deviation). Groups were compared with two-tailed t tests.
Cohen's d values (effect size) are also shown. RBANS: Repeatable Battery for the
Assessment of Neuropsychological Status.

image of Fig.�2


Table 3
Results from the visual perceptual tests.

Schizophrenia
(n = 50)

Controls
(n = 50)

d

Low SF/high TF contrast sensitivity 68.2 (10.0) 88.2 (9.9) 1.43
High SF/low TF contrast sensitivity 53.2 (11.8) 65.1 (15.0) 0.81
Form coherence (%) 32.9 (11.4) 26.6 (10.1) 0.56
Motion coherence (%) 38.7 (14.8) 23.4 (9.7) 1.05
Contrast threshold change at 1λ (log-unit) 0.23 (0.1) 0.25 (0.1) 0.18
Contrast threshold change at 3λ (log-unit) −0.08 (0.1) −0.18 (0.1) 0.83

Data are mean (standard deviation). SF: spatial frequency; TF: temporal frequency;
Cohen's d values (effect size) are shown.
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3.6. Correlations between neuropsychological and visual performance
and FMRP levels

Table 4 shows the correlation coefficients. Patients and control indi-
viduals displayed a similar pattern of correlations, although these rela-
tionships were more robust in patients than in control individuals.
FMRP levels were associated with better contrast sensitivity at low SF/
high TF, RBANS attention, motion perception, and perceptual integration.

3.7. Median split analysis of RBANS and visual perceptual performance

We divided control participants and patients with schizophrenia
into two groups using the median of the FMRP level (individuals with
low and high FMRP level). In control individuals, there were significant
differences between high and low FMRP groups in contrast sensitivity
at low SF/high TF (high: 92.8 (SD = 8.8); low: 83.6 (SD = 8.5);
t(48) = −3.76, p b 0.005) and in motion coherence (high: 20.2
(SD = 5.5); low: 26.5 (SD = 11.8); t(48) = 2.41, p b 0.05).

In patients with schizophrenia, we found significant differences be-
tween high and low FMRP groups in contrast sensitivity at low SF/high
TF (high: 73.0 (SD = 8.9); low: 63.4 (SD = 8.3); t(48) = −3.92,
p b 0.001), motion perception (high: 30.2 (SD = 10.2); low: 47.2
(SD = 13.9); t(48) = 4.92, p b 0.001), contrast threshold change at
3λ target–flanker distance (high: −0.14 (SD = 0.1); low: −0.03
(SD = 0.09); t(48) = 4.16, p b 0.001), and RBANS attention (high:
87.5 (SD = 15.6); low: 74.4 (SD = 14.1); t(48) = −2.92, p b 0.05).

3.8. Correlation with antipsychotic doses

We did not find a significant correlation between chlorpromazine-
equivalent antipsychotic dose and FMRP levels. The antipsychotic dose
did not correlatewith the test performances (−0.2 b rs b 0.2, ps N 0.1).

4. Discussion

The findings of the present study suggest that reduced FMRP plays a
key role in the visual dysfunction associated with schizophrenia. FMRP
may also modulate visual perception in healthy individuals (Kéri &
Benedek, 2011, 2012). We observed trend-level and consistent positive
relationships between FMRP levels and neuropsychological functions,
Table 4
Correlations between FMRP level and neuropsychological and visual perceptual measures.

CS1 CS2 Att MemI MemD

Controls
(n = 50)

0.69⁎⁎ −0.20 0.32⁎ 0.26 0.11

Schizophrenia
(n = 50)

0.67⁎⁎ −0.28⁎ 0.54⁎⁎ 0.30⁎ 0.19

The table shows Pearson's correlation coefficients. CS1: contrast sensitivity at low spatial an
frequencies; Att: attention; MemI: immediate memory; MemD: delayed memory; VSP: visu
1λ: contrast threshold change at 1λ target–flanker distance; 3λ: contrast threshold change
⁎ p b 0.05.

⁎⁎ p b 0.002 (Bonferroni-corrected threshold).
but even when it reached statistical significance (attention and immedi-
ate memory), it hardly passed the criteria of correction for multiple com-
parisons. Therefore, it seems that FMRP has a greater impact on particular
domains of visual perception assessed by psychophysical tasks than on
neuropsychological functions assessed by standard pen-and-paper tests.

The relationship between FMRP and perception was selective for
certain visual functions, similarly to our previous data from healthy in-
dividuals (Kéri & Benedek, 2011, 2012). Specifically, we observed a cor-
relation between FMRP level and contrast sensitivity for low SF/high TF
gratings, motion perception, and perceptual integration. There was no
such relationship between FMRP and contrast sensitivity at high SF/
low TF and form perception. These findings can be interpreted in the
framework of themagnocellular (M)/parvocellular (P) precortical visu-
al pathways and their cortical recipients (dorsal occipito-parietal and
ventral occipito-temporal streams, respectively). Low SF/high TF grat-
ings are thought to preferably stimulate M pathways, whereas high
SF/low TF gratings activate P pathways. M pathways provide essential
information to dorsal stream areas responsible for motion perception
and visuospatial coordination, whereas P pathways project to ventral
stream areas participating in form and color perception (for an over-
view, see Gilbert, 2013; Nassi & Callaway, 2009). In schizophrenia,
there is an impairment of both systems, but M pathways seem to be
dominantly affected (Butler et al., 2008). The fact that FMRP might be
implicated in the appropriate organization and functioning of M path-
ways, but not P pathways, is in well accordance with this model
(Kogan et al., 2004; Zangenehpour et al., 2009).

However, this model has limitations. First, the selective stimulation
and functional unity of M and P pathways have been debated
(Goodbourn et al., 2012; Skottun & Skoyles, 2007). Second, M and
P pathways interact in the primary visual cortex (Sawatari & Callaway,
1996), and therefore their strictly separate contribution to dorsal and
ventral systems is dubious. Third, recent evidence suggests a “patch-
work” organization of higher-level visual cortical areas instead of func-
tionally separated dorsal and ventral streams (deHaan& Cowey, 2011).
Nevertheless, there is substantial evidence from several studies that
stimulus characteristics (e.g., spatial frequency, contrast, motion, and
color) significantly and differentially affect behavioral performance
and brain activation in schizophrenia (e.g., Butler et al., 2007;
Calderone et al., 2013; Chen, 2011; Graham & Meng, 2011; Kéri et al.,
2004, 2012; Martínez et al., 2008; McBain et al., 2010; O'Donnell et al.,
1996, 2002; Schechter et al., 2005). Beyond generalized deficits in con-
trast sensitivity and coherence threshold, the present study demon-
strated more severe impairments in patients for low SF and moving
stimuli than for high SF and form stimuli, which is consistent with the
above-discussed findings. Moreover, the differential effect of FMRP
lends further support for the existence of separate systems for the
processing of low SF/motion and high SF/form.

We also found a relationship between FMRP level and perceptual inte-
gration, whichmay bemediated by lateral connections between process-
ing units in early visual cortical areas (Kovács, 1996; Polat & Sagi, 1993;
for a review of perceptual integration and organization in schizophrenia,
see Silverstein & Keane, 2011). At specific distances, these lateral interac-
tions are inhibitory (e.g., 1λ target–flanker distance), whereas in other
VSP Lang Form Motion 1λ 3λ

0.09 0.15 0.13 −0.41⁎ −0.05 −0.31⁎

0.22 0.28 0.0 −0.57⁎⁎ 0.18 −0.61⁎⁎

d high temporal frequencies; CS2: contrast sensitivity at high spatial and low temporal
ospatial functions; Lang: language; Form: form coherence; Motion: motion coherence;
at 3λ target–flanker distance.
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distances it is excitatory (e.g., 3λ target–flanker distance). In the latter
case, flankers enhance contrast detection at the target patch, and there-
fore contrast threshold is reduced relative to the scenariowhen the target
stimulus is presentedwithout flankers (Polat & Sagi, 1993). This excitato-
ry effect is diminished in schizophrenia (Kéri et al., 2005a,b; Must et al.,
2004). Data from the present study raise the possibility that FMRP may
have an effect on the development and functional integrity of lateral con-
nections in early visual cortical areas. This hypothesis must be confirmed
by animal studies.

Our results must be interpreted with caution. Development and
functional plasticity of neuronal circuits, such as domains of the visual
system, are not regulated by a single molecular factor, and therefore
FMRP cannot be considered as a sole master regulator. Nevertheless,
the high expression of FMRP in M cells, but not in P cells, and the
marked loss of certain visual function in FXS and premutation carriers
strongly indicate its key role (Kéri & Benedek, 2009; Kogan et al.,
2004). Although evidence suggests that in FXS FMRP is abnormally
expressed in both brain tissue and peripheral lymphocytes (e.g.,
Devys et al., 1993; Kogan et al., 2004; Pieretti et al., 1991; Willemsen
et al., 1997), the exact relationship between neuronal and peripheral
changes in neuropsychiatric disorders must be directly verified.

FMRP is an RNA binding protein regulating the translation of hun-
dreds of transcripts in the brain, with a special reference to subunits
of gamma-amino butyric acid (GABA) and metabotropic glutamate re-
ceptors (Heulens & Kooy, 2011). Altered FMRP levels are not specific
for schizophrenia: similar findings have been revealed in bipolar disor-
der, major depressive disorder, and autism without FXS (Fatemi &
Folsom, 2011; Fatemi et al., 2010, 2011, 2013). The visual phenotype
of mood disorders and autism is partly similar to that of schizophrenia
(e.g., Dakin & Frith, 2005; Kéri et al., 2007; Laycock et al., 2007), but
more data are indispensable to obtain conclusive evidence and to ex-
plore the shared role of FMRP. Overall, FMRP may be a missing link in
the GABA and glutamate hypothesis of schizophrenia and other neuro-
psychiatric disorders and may provide new targets for pharmacological
agents crossing the boundary of classic diagnostic categories.
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