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Abstract—Increased low-grade inflammation is thought to

be associated with several neuropsychiatric disorders char-

acterized by decreased neuronal plasticity. The purpose of

the present study was to investigate the relationship

between structural changes in the human brain during cog-

nitive training and the intensity of low-grade peripheral

inflammation in healthy individuals (n= 56). A two-month

training (30 min/day) with a platformer video game resulted

in a significantly increased volume of the right hippocampal

formation. The number of stressful life events experienced

during the past year was associated with less pronounced

enlargement of the hippocampus. However, the main predic-

tor of hippocampal volume expansion was the relative

peripheral expression of Nuclear Factor-jB (NF-jB), a tran-

scription factor playing a central role in the effect of pro-

inflammatory cytokines. Interleukin-6 (IL-6) and C-reactive

protein levels were not related to hippocampal plasticity

when NF-jB was taken into consideration. These results

suggest that more intensive peripheral inflammation is

associated with weaker neuronal plasticity during cognitive

training. � 2014 IBRO. Published by Elsevier Ltd. All rights

reserved.
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INTRODUCTION

Perhaps the pathophysiology of inflammation received

the most intense attention during the past decades as a
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key factor in the genesis of degenerative,

developmental, and stress-related disorders of the brain.

The final common pathway disrupted by inflammation

may be neuroplasticity subserving learning, memory,

and cognitive/behavioral flexibility, which are severely

impaired in numerous neurological and psychiatric

disorder (e.g., Alzheimer’s and Parkinson’s disease,

schizophrenia, and mood disorders) (Perry et al., 2007;

Miller et al., 2009a,b; Schwartz and Shechter, 2010;

Maes, 2011; Altamura et al., 2013; Nola et al., 2013).

However, neuroinflammation is not necessarily a

pathological process and plays a remarkable role in the

normal homeostasis of the brain. It has been postulated

that psychological influences modulate immune

mechanisms in the brain and peripheral blood, such as

the production of inflammatory cytokines (interleukin

[IL]-1, IL-6, Tumor Necrosis Factor-a [TNF-a]) and other

mediators (e.g., arachidonic-acid derivates and various

neurotrophins). The moderate and balanced production

of these factors is vital in the promotion of neuronal

plasticity, including hippocampal long-term potentiation

and the formation of new cells and synapses, whereas

their dysregulated overproduction may cause

neurotoxicity and altered development (Yirmiya and

Goshen, 2011; Schwartz et al., 2013; Xanthos and

Sandkühler, 2014).

While experimental data from basic sciences provided

multifaceted evidence, it has not been studied how low-

grade inflammation affects human structural brain

plasticity in real-life circumstances. It has been shown

that acute peripheral inflammation impairs spatial

memory by reducing glucose metabolism in the medial

temporal lobe (Harrison et al., 2014), but the long-term

structural consequences are less clear (Frodl and

Amico, 2014).

What kind of evidence is available regarding training-

related structural plasticity in the human brain? The first

longitudinal study by Draganski et al. (2004) found that

3 months of juggling training was associated with

increased gray matter volume in the mid-temporal area

and intraparietal sulcus responsible for motion and spatial

perception. Cross-sectional studies demonstrated that an

extensive practice with commercially available video

games induced gray matter expansion in various brain

areas, including the hippocampal formation (Kühn et al.,

2011; Kühn and Gallinat, 2013). Recently, researchers

confirmed and extended these findings in a longitudinal

study. Individuals who played a platformer game (Super

Mario) for 2 months for at least 30 min/day displayed gray
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Table 1. Demographic characteristics and markers of low-grade

peripheral inflammation

Age (years) 36.8 (10.3)

Gender (male/female) 30/26

Education (years) 13.7 (4.1)

IQ 109.5 (10.2)

Socioeconomic status 39.2 (8.2)

Stressful life events (past 1 year) 2.1 (1.9)

Smoking (cigarettes/week) 3.5 (8.4)

Alcohol use (number of drinks/week) 2.9 (7.7)

Waist-to-hip ratio 0.78 (0.07)
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matter increase in the right hippocampal formation and

dorsolateral prefrontal cortex (Kühn et al., 2014). More-

over, increased hippocampal volume had a functional sig-

nificance characterized by a shift from egocentric to

allocentric spatial navigation strategy (Kühn et al., 2014;

for a review of structural plasticity in other conditions,

see Lövdén et al., 2013).

The present study examined how different levels of

low-grade systemic inflammation might affect structural

brain plasticity in healthy individuals during cognitive

training. To achieve this aim, we sought a possible

relationship between hippocampal volume changes

during video game training and pro-inflammatory

markers.

We focused on three pro-inflammatory molecules

(Murphy et al., 2013). One of the most frequently investi-

gated marker is Nuclear Factor-jB (NF-jB), which is a

transcription factor activated by various inflammatory

stimuli, representing a ‘‘hub’’ in the pro-inflammatory intra-

cellular network. Inactive NF-jB is sequestered in the

cytoplasm by inhibitors of jB (I-jB) (Webster et al.,

2002; Ghosh and Hayden, 2008). The stress hormone

cortisol and catecholamines released from the sympa-

thetic nervous system and adrenal gland have an impact

on the expression of NF-jB and I-jB, and a higher NF-

jB/I-jB ratio reflects more intense pro-inflammatory pro-

cesses (Webster et al., 2002; Irwin and Cole, 2011).

The other two markers of systemic low-grade

inflammation were IL-6 and C-reactive protein (CRP).

IL-6 is a ubiquitous cytokine for systemic and neuronal

inflammation produced by immune cells, muscle cells,

and adipocytes; not surprisingly, IL-6 is supposed to be

linked to several common diseases in which

inflammation is implicated (neuropsychiatric disorders,

cardiovascular diseases, autoimmune diseases, obesity,

and cancer) (Rose-John, 2012; Ataie-Kachoie et al.,

2013). CRP is an acute phase protein produced by liver

cells in parallel with IL-6 (Bastard et al., 1999). This pro-

tein is an important marker of general systemic and neur-

oinflammation (Frodl and Amico, 2014; Lopresti et al.,

2014), known for many decades (Powell, 1979).

The hypotheses of the present study were as follows:

(1) Based on the results of Kühn et al. (2014), we

expected increased hippocampal volume following video

game training. To test the specificity of hippocampal

changes, we also measured the volume of the caudate

nucleus in which structural changes might reflect general

improvements in motor skills. (2) We predicted a signifi-

cant relationship between low-grade inflammation and

structural brain changes. Specifically, we hypothesized

that individuals with a higher level of low-grade inflamma-

tion would exhibit smaller volume expansion in the hippo-

campus (Frodl and Amico, 2014).
Number of individuals using oral contraceptives 12

CRP (mg/L) 0.94 (0.81)

IL-6 (pg/mL) 0.64 (0.80)

NF-jb 7.8 (2.2)

I-jb 6.3 (1.2)

NF-jb/I-jb 1.2 (0.2)

Data are mean (standard deviation) with the exception of gender ratio and the

number of individuals using oral contraceptives. NF-jb and I-jb are relative

expression values of RNAs normalized to b-actin.
EXPERIMENTAL PROCEDURES

Participants

Fifty six healthy volunteers were recruited at the National

institute of Psychiatry and Addictions, Budapest, via

emails, social networks, and personal acquaintances.

The subjects did not report any history of psychiatric
and neurological disorders, and they did not suffer from

known illnesses associated with inflammation. All

participants received the following interviews and

scales: Structured Clinical Interview for DSM-IV Axis I

Disorders, Clinician Version (SCID-CV) (First et al.,

1996) to exclude mental disorders; Hollingshead Four

Factor Index (Hollingshead, 1975) to describe the socio-

economic status; Wechsler Abbreviated Scale of Intelli-

gence (Wechsler, 1999) to evaluate general cognitive

functions; Brief Life Event Questionnaire (Brugha and

Cragg, 1990) to assess stressful life events. Other factors

influencing low-grade inflammation (smoking, alcohol

consumption, use of oral contraceptives, visceral obesity)

were also evaluated (Table 1). We asked the participants

not to change their diet, sleep, and smoking/drinking hab-

its during the experiment. All volunteers documented

these habits, possible occurrences of major life events,

and changes in mood and general health in a written daily

diary. After a complete description of the study, all partic-

ipants gave written informed consent. The study was

approved by the institutional ethics board and was done

in accordance with the Declaration of Helsinki.
Video game training

We followed the procedure of Kühn et al. (2014). Partici-

pants, who did not have extensive experience with video

games, played with Super Mario 64 on a portable Ninten-

do Dual Screen (DS) XXL console for 30 min/day over a

period of 2 months. In this platformer game, players move

in the virtual environment and collect stars while explor-

ing, solving puzzles, and defeating enemies. The environ-

ment is shown from two perspectives: on the top of the

screen, players see a third-person perspective, and on

the bottom of the screen the map is displayed from a

bird’s eyes view. At the end of the training procedure, par-

ticipants received 5000 Hungarian Forints (15–20 Euros).

Additionally, they rated on a seven-point scale how much

fun, frustration, and desire to play they experienced dur-

ing training. The stars collected were obtained from the

video gaming console (Kühn et al., 2014).
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Structural brain imaging

We used the FreeSurfer protocol as described in the

manual and previous studies (Martinos Center for

Biomedical Imaging, Boston, MA, USA; http://

surfer.nmr.mgh.harvard.edu; version: v5.1.0, Dell XPS

workstation, Linux system) (Desikan et al., 2006; Fischl

et al., 2002, 2004). A multiecho FLASH sequence with

1-mm3 isotropic resolution was applied (Siemens Trio

3T scanner; 256 � 256 matrix, 176 sagittal slices with a

thickness of 1 mm, TR 2530 ms, TI 1100 ms, TE 1.64/

3.5/5.36/7.22 ms, bandwidth 651 Hz, non-selective exci-

tation at 7�). We measured the volume of the hippocampi

and the caudate nucleus. FreeSurfer regions-of-interest

(ROIs) were visually inspected before the analysis, but

no manual correction was necessary. In a pilot study,

two independent experts performed the manual parcella-

tion of the hippocampal region and the caudate nucleus in

20 healthy control subjects. The intraclass correlation

coefficients (ICCs) for FreeSurfer and manual parcellation

methods were high (ICCs > 0.8). Hippocampal and cau-

date volumes were normalized to total intracranial volume

(ICV), which was also measured with FreeSurfer

(Whitwell et al., 2001).
Table 2. Absolute volumes (mm3) of the hippocampal formation and

caudate nucleus before and after training on Super Mario 64

Before training After training

Left hippocampus 4114.4 (510.6) 4108.4 (509.4)

Right hippocampus* 4203.4 (507.1) 4468.2 (445.7)

Caudate nucleus 6754.6 (329.8) 6749.8 (350.0)

Data are mean (standard deviation). Absolute volumes were corrected by dividing

with the intracranial volume (ICV) (mean: 1.6 � 106 mm3, SD= 0.2).
* F-tests, p< 0.05.
Characterization of low-grade inflammation

We used the procedure of Murphy et al. (2013) as a

standard protocol to characterize the level of low-grade

inflammation in healthy individuals for social and neuro-

sciences. In the quantitative real-time polymerase chain

reaction (qPCR) procedure, the methodological recom-

mendations of Baine et al. (2013) were taken into consid-

eration. We isolated peripheral blood mononuclear cells

from fresh blood samples using Ficoll-Hypaque density-

gradient centrifugation. We used the QIAshredder cell

lysis kit and the Qiagen RNeasy RNA extraction kit (Qia-

gen, Hilden, Germany) according to the manufacturer’s

instructions. The Superscript III Reverse Transcriptase

system (Invitrogen, Carlsbad, CA, USA) was used for

the reverse transcription of RNA. The AB 7500 Fast Sys-

tem and the QuantiTect SYBR Green PCR kit (Applied

Biosystems, Foster City, CA, USA) were applied for the

complete analysis. NF-jb and I-jb RNAs were measured

as described by Rohleder et al. (2009) and Murphy et al.

(2013). Data were normalized to b-actin.
CRP was measured using high-sensitivity chemilu-

minescence (IMMULITE 2000, detection threshold:

0.20 mg/L; interassay coefficient of variation: 2.2%)

(Diagnostic Products Corporation, Los Angeles, CA,

USA). IL-6 was measured using high-sensitivity

enzyme-linked immunosorbent assay kits (HS600B;

R&D Systems, Minneapolis, MN, USA; detection

threshold: 0.039 pg/mL and interassay variability:

<10%).

Each parameter of low-grade inflammation (NF-jb
and I-jb RNA, CRP, IL-6) was measured twice from

two different blood samples. The first measurement was

performed at the beginning of the training period,

whereas the second measurement was performed

2 months later. All measures showed less than 10%

changes across the two measurements. We also
determined the composition of the circulating leukocyte

pool and found no relevant changes (<10%). In the

statistical analysis, we included the data from the first

measurement.
Data analysis

The STATISTICA 11 software (StatSoft, Inc., Tulsa, USA)

was used for data analysis. A repeated measures

analysis of variance (ANOVA) was used to examine

potential changes in brain structures during training.

Multiple regression analysis was used to determine the

predictors of volume changes. Partial correlation

analysis was applied to follow-up the results from the

regression analyses. The level of statistical significance

was a < 0.05.
RESULTS

Changes in brain volumes

The brain volumes are depicted in Table 2 and Fig. 1. An

ANOVA conducted on the corrected hippocampal

volumes indicated a significant interaction between

sessions (before and after video game training) and

laterality (right vs. left hippocampus) (F (1,110) = 80.93,

p< 0.001, partial g2 = 0.42, power: 1.0). Planned

comparisons with F-tests indicated a significant volume

expansion in the right hippocampus (F (1,110) = 4.60,

p< 0.05, partial g2 = 0.04, power: 0.57), but not in the

left hippocampus (p> 0.5) (Fig. 1). A separate ANOVA

indicated no significant changes in the volume of the

caudate nucleus (p> 0.5) (Table 2).
Predictors of hippocampal volume changes

The dependent variable was the volume change of the

right hippocampus (after training minus before training),

which was significant in the previous analysis. In the first

forward stepwise linear regression analysis, we included

demographic parameters (age, gender, education, IQ,

socioeconomic status, number of stressful life events,

smoking, alcohol use, oral contraceptives, waist-to-hip

ratio) (Table 1), but not the inflammatory markers, as

potential predictors of volume changes. There was a

single significant negative predictor: the number of

stressful life events (b�= –0.31, t (54) = –2.46,

p< 0.05, R2 = 0.08).

In the second forward stepwise linear regression

analysis, inflammatory markers were added to the

model. Results revealed a two-factor solution, with NF-

jb as a significant predictor (b�= –0.51, t (53) = –4.33,

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu


Fig. 1. Corrected mean hippocampal volumes (mm3) and raw data before and after video game training. Error bars indicate 95% confidence

intervals. ⁄p< 0.05 (after > before, right hippocampus).
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p< 0.001, R2-change = 0.35). CRP also appeared in the

final solution of the regression model (R2-change = 0.03,

p= 0.1).

To follow-up and confirm the results from the

regression analyses, we conducted partial correlations

including changes in right hippocampal volume, number

of stressful life events, and NF-jb. There were

significant negative correlations between changes in

right hippocampal volume and NF-jb (r= –0.59,

p< 0.01) and between changes in right hippocampal

volume and stressful life events (r= –0.32, p< 0.05)

(Fig. 2). However, when the relationship between

hippocampal change and stressful life events was

corrected for NF-jb, the correlation did not reach the

level of statistical significance (r [corrected] = –0.19,

n.s.).

It is important to note that the correlation plot between

hippocampal volume change and stressful life events

suggested that the few individuals with the highest

number of stressful life events had very small changes.

When these individuals (number of stressful life

events > 5) were excluded from the analysis, the same

trend for negative correlation was seen, but it did not

reach the level of significance (r= –0.26, p= 0.06).
Behavioral measures

Participants obtained an average of 82.6 stars (standard

deviation (SD) = 25.4) on the video game. Rating

scales (scores: 1–7) showed the following values: desire

to play: 4.3 (SD = 3.7); frustration: 1.3 (SD = 0.9); fun:

5.2 (SD = 2.6). These behavioral measures did not
correlate with changes in right hippocampal volume (–

0.1 < r< 0.1, p> 0.1) with the exception of desire to

play (r= 0.39, p< 0.05). When this score was included

in the regression models described above, the results

did not change.
DISCUSSION

The results of the present study confirmed our

hypotheses. As expected, video game training was

associated with a selectively increased right

hippocampal volume, which is consistent with the

results of Kühn et al. (2014). The importance of this repli-

cation is that we were able to show this effect by using a

different methodology (ROI-based FreeSurfer versus

voxel-based morphometry). We did not find changes in

the caudate volume. Kühn et al. (2011) reported

increased striatal volume in frequent video game players,

but it was not revealed in a later longitudinal study (Kühn

et al., 2014). Moreover, we included the dorsal striatum,

whereas the positive finding of Kühn et al. (2011) was

confined to more ventral regions.

Kühn et al. (2014) demonstrated a significant positive

relationship between desire to play the game and

changes in right hippocampal gray matter probability.

We replicated this finding and excluded the possibility that

stressful life events were associated with decreased

desire to play in our participants. Similarly, written diaries

did not indicate changes in lifestyle, major life events, and

general health that might have confounded the results.

The novel finding of the study was that low-grade

systemic inflammation predicted the extent of the



Fig. 2. Correlations between changes in the right hippocampal volume (mm3, after training minus before training), the relative expression of NF-jB
(r= –0.59, p< 0.01), and the number of stressful life events (r= –0.32, p< 0.05). Partial correlation analyses revealed that the correlation with

stressful life events did not retain significance when it was corrected for NF-jB (r= –0.19).
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training-related right hippocampal enlargement.

Specifically, NF-jb was a robust predictor accounting

for more than 30% of the variance in the hippocampal

enlargement. Studies using various methodological

approaches suggest that our key finding regarding NF-

jb is not a false-positive result. This transcription factor

is an important convergence point for several signal

transduction pathways that are essential in inflammation

(Koo et al., 2010; Hoesel and Schmid, 2013). From a

neuroanatomical point of view, it is especially critical in

the homeostatic regulation of neurons in the hippocampal

formation, which is sensitive for systemic inflammation

(e.g., Marsland et al., 2008; Satizabal et al., 2012; Liu

et al., 2012; Järlestedt et al., 2013). Koo et al. (2010)

demonstrated that stress activated NF-jb signaling and

decreased cell division in the hippocampus, which was

blocked by an inhibitor of NF-jb. Moreover, NF-jb med-

iated the relationship between depressive behavior and

chronic stress (Koo et al., 2010). Mice exposed to con-

stant darkness, a robust environmental stress, also dis-

played depressive behavior and enhanced NF-jb acidity

in the hippocampus (Monje et al., 2011). NF-jb plays

an important role in hippocampal neurogenesis, neuronal

growth, and learning and memory (Crampton and

O’Keeffe, 2013), which might be affected in stress and

depression (Danzer, 2012). These results may explain

why the negative relationship between hippocampal

enlargement and stressful life events disappeared when

NF-jb was included in the regression model (note that

the negative correlation between hippocampal volume

change and stressful life events was driven by a few

cases with the highest number of stressful events).

Human studies also support the role of NF-jb in

stress response and neuronal plasticity. There are

several psychosocial stressors that activate pro-

inflammatory cytokines and NF-jb at the intracellular

level. These factors include social rejection (Dickerson
et al., 2009; Slavich et al., 2010; Murphy et al., 2013),

childhood abuse (Pace et al., 2012), interpersonal conflict

with spouses and friends (Kiecolt-Glaser et al., 2005;

Fuligni et al., 2009; Miller et al., 2009a,b), providing care

for individuals with severe illness (Rohleder et al.,

2009), low socioeconomic status (Jousilahti et al., 2003;

Owen et al., 2003; Nazmi and Victora, 2007), and social

isolation and loneliness (Cacioppo et al., 2003; Steptoe

et al., 2004; Eisenberger et al., 2010; Hackett et al.,

2012) (for reviews, see Hänsel et al., 2010; Chen and

Miller, 2013). It has been demonstrated that stressful life

events have a negative impact on human brain structure

even without clinically relevant psychopathology (Cohen

et al., 2006; Gianaros et al., 2007; Ganzel et al., 2008;

Papagni et al., 2011).

Bierhaus et al. (2003) showed that NF-jb is important

in the responsiveness of mononuclear blood cells to psy-

chosocial stress. The authors demonstrated that NF-jb
rapidly increased during stress exposure together with

plasma levels of catecholamines and cortisol (Bierhaus

et al., 2003). Powell et al. (2013) demonstrated that

sympathetic nervous system-induced up-regulation of

myelopoiesis during chronic psychosocial stress was

associated with the pro-inflammatory component of the

leukocyte transcription response, including NF-jb.
There is accumulating evidence that low-grade

systemic inflammation is influenced by a multitude of

environmental factors in addition to stressful life events.

These factors include abdominal obesity, smoking,

alcohol consumption, oral contraceptives, diet, exercise,

sleep, factors influencing gut permeability, atopic

disorders, periodontal diseases, and vitamin D intake

(Imhof et al., 2001; Pirkola et al., 2010; Berk et al.,

2013; Murphy et al., 2013). In aged rats, Barrientos

et al. (2011) found that physical exercise reversed inflam-

mation-induced impairments in hippocampus-dependent

long-term memory, normalized Brain-Derived Neurotro-
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phic Factor (BDNF) expression in the hippocampus, and

prevented age-related microglial sensitization.

Of course, these factors display complex interactions

and covariances; when controlled in our analysis, only

NF-jb remained a significant predictor of decreased

hippocampal plasticity. Similarly, pro-inflammatory

factors (IL-6, CRP, and NF-jb) also co-vary with each

other. One may suggest that NF-jb mediated the

relationship between stress and decreased hippocampal

plasticity. However, in light of complex covariances

among psychosocial and physiological factors with

dubious functional and causal relevance (Chen and

Miller, 2013), this assumption may be an over-simplifica-

tion. This complexity is illustrated by the study of Frodl

et al. (2012) who showed that in patients with major

depressive disorder childhood maltreatment was associ-

ated with increased CRP. Patients also displayed high

levels of IL-6 and less expression of glucocorticoid-induc-

ible genes. The regression analysis conducted by Frodl

et al. (2012) indicated a significant positive effect of gluco-

corticoid-inducible gene expression and an inverse effect

of IL-6 level on hippocampal volumes. Therefore, taking

into account the complex and less-defined relationships

of these factors, we did not conduct a formal mediation

or moderator analysis including stressful life events and

NF-jb.
Another limitation of the present study was that we did

not assess changes in the volume of the dorsolateral

prefrontal cortex, despite the fact that Kühn et al. (2014)

showed significantly increased gray matter volume in this

cortical area. We omitted this cortical region because we

were not able to gain acceptable test–retest reliability

using the FreeSurfer ROI-based approach in groups of

healthy individuals without any intervention, whereas in

the case of hippocampus, repeated measurements pro-

vided highly reproducible results (Levy-Gigi et al., 2013;

Molnár and Kéri, 2014).

It must also be mentioned that the magnitude of

hippocampal volume expansion was small, which casts

doubts on the biological reliability of the findings.

However, we found a significant interaction between

training and laterality (left vs. right hippocampus), with

the expected volume expansion in the case of the right

but not left hippocampus. A change of raw 264.8 mm3

(6.3%) is not unreliably small if we consider the findings

of the literature. For example, Draganski et al. (2004)

found 3–4% of gray matter expansion in the sensory cor-

tex after an extensive visuomotor training.

We did not correct our analyses for multiple

comparisons, because we used a hypothesis-driven

approach when corrections are not needed (Saville,

1990). Critically, the two key findings (interaction between

training and laterality and the relationship between hippo-

campal volume changes and NF-jb) were robust.

In conclusion, these results lend further credence to

the concept that cognitive training is capable of

changing brain structure in humans. Notably, we

provided evidence that this plasticity is influenced by the

level of low-grade inflammation, that is, a higher activity

of pro-inflammatory processes was associated with a

smaller increment of hippocampal volume. Future
studies should investigate the relevance of these

findings in neuropsychiatric disorders, as well as

potentially different vulnerabilities of subfields in the

medial temporal lobe (Wang et al., 2010; Teicher et al.,

2012; Huang et al., 2013).
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