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Information from the environment can be based on a
single or several modalities. The simultaneous processing
of information separated in space and/or time depends
on multiple factors. Visual illusions serve as a good tool
with which to investigate the parallel processing of
information and their interactions. This study was
designed to gain information about a unimodal illusion:
a target that flashes once seems to flash more as a result
of a simultaneously presented inducer flashing several
times nearby. The first aim of this work was to
understand whether the number of perceived flashes is
merely a result of a bias in the criterion level or whether
it is based on a real percept. We then clarified how the
illusion finds its way into the percept. The final step was
designed to establish the logic of the processing in the
background by determining whether the modality
appropriateness hypothesis, the information reliability
hypothesis, or the discontinuity theory best explains the
predominant role of the inducer.

Introduction

Information reaching the different sensory systems is
processed by the various sensory cortical areas as
though they are specialized to deal with a parallel flow
of information. As knowledge accumulated concerning
the structure and function of these regions, it became
clear that the sensory regions previously regarded as
uniform in fact involve subdivisions that process
different features in that particular sensory domain.

The visual percept is constructed through two
parallel cortical systems. For fine details and colors the
ventral (What?) pathway is used, while for spatial
attention, speed, and direction of movement, the dorsal
pathway (Where?) is relevant (Ungerleider & Mishkin,
1982). We are aware that the cortical streams are

functionally not separated, but this oversimplified
picture might serve as a good framework facilitating an
understanding of the cortical network of visually active
areas. Data from monkey electrophysiology experi-
ments have revealed that the different areas within the
above-mentioned pathways react with different selec-
tivities (preferences) to different features (Felleman &
Van Essen, 1991). Hierarchically higher regions, such
as the inferotemporal cortex contain cortical modules
that prefer stimuli that are similar to each other
(Tanaka, 1996). These observations are consistent with
clinical findings of an isolated loss of a certain sensory
feature (achromatopsy, etc.; Behrmann, 2001).

One of the greatest challenges is to understand the
way in which individual features are integrated into one
coherent percept (Livingstone & Hubel, 1988). An
approach may be made through the understanding of
binding different features relating to the same object
and segregating the object and the background
(Damasio, 1989). The principles responsible for the
association of features that belong together are well
known (Koffka, 1935; Köhler, 1975; Kanizsa, 1979). As
an example, we tend to perceive stimuli that arrive
simultaneously as coming from the same source
(Meredith, Nemitz, & Stein, 1987; Watanabe &
Shimojo, 2001). Some studies question the physiolog-
ical relevance of the binding problem (Shadlen &
Movshon, 1999) but an increasing number of clinical
studies and psychophysical tests on healthy individuals
indicate that the binding problem does exist, even in
everyday clinical practice (Singer, 1993; Friedman-Hill,
Robertson, & Treisman, 1995; Robertson, 2003).

Another way of dealing with the binding problem is
to study contextual effects; that is, how the perception
of a particular object varies with the context it appears
in (Levitt & Lund, 1997; Sengpiel, Sen, & Blakemore,
1997; Somers et al., 1998). The spatial features of such

Citation: Csibri, P., Kaposvári, P., & Sáry, G. (2014). Illusory flashes and perception. Journal of Vision, 14(3):6, 1–11, http://www.
journalofvision.org/content/14/3/6, doi:10.1167/14.3.6.

Journal of Vision (2014) 14(3):6, 1–11 1http://www.journalofvision.org/content/14/3/6

doi: 10 .1167 /14 .3 .6 ISSN 1534-7362 � 2014 ARVOReceived May 15, 2013; published March 5, 2014

mailto:csibri.peter@med.u-szeged.hu
mailto:csibri.peter@med.u-szeged.hu
mailto:kaposvari.peter@med.u-szeged.hu
mailto:kaposvari.peter@med.u-szeged.hu
mailto:sary.gyula@med.u-szeged.hu
mailto:sary.gyula@med.u-szeged.hu


interacting phenomena have been well studied, but
there have been relatively few studies concerning the
temporal aspects of the contextual effect. A high-
frequency visual flicker, for instance, may change the
subjectively perceived pitch of a sound (it seems higher;
Gebhard & Mowbray, 1959; Welch, DuttonHurt, &
Warren, 1986). A simple flash presented simultaneously
with several beeps leads to the illusion of several flashes
(Shams, Kamitani, & Shimojo, 2000). This multimodal
flicker illusion or double flash illusion has triggered
several studies. It has been demonstrated that the
mechanism behind this illusion is not merely a bias in
the criterion level (McCormick & Mamassian, 2008),
and this finding has been supported by electrophysio-
logical studies indicating that at least some of these
illusions give rise to a percept of a real second flash.
Electroencephalogram (EEG) studies have revealed
significantly higher oscillatory activity, induced gamma
band responses, and supra-additive audiovisual inter-
actions during such illusions (Bhattacharya, Shams, &
Shimojo, 2002). EEG and evoked potential experiments
have led to the findings that the perception activity is
strongly modulated during the illusory flash as is the
latency in trials in which the illusory flash was perceived
(Shams, Kamitani, Thompson, & Shimojo, 2001).

A similar phenomenon can be observed during the
processing of unimodal information. In the unimodal
illusory flash effect, the perceived number of flashes of
a target stimulus can be increased by an inducer
flashing nearby (Chatterjee, Wu, & Sheth, 2011). Such
illusions are especially suited for the investigation of the
temporal binding of information. The previously
mentioned, so-called unimodal flicker illusion, has been
less researched than the illusion in which two different
modalities interact (double flash illusion; Shams et al.,
2001). During the flicker illusion, the inducer triggers
the illusory percept. The psychophysical and neuro-
logical background is not yet clear and raises the
question whether it is caused merely by the more liberal

criterion answering ‘‘yes’’ in the presence of more than
one inducer. This itself might result in more correct hits
(Green & Swets, 1966). The key novelty in our paper is
that we calculated the individual criterion level for each
subject and determined whether and if so how the
illusion appears in perception subsequently.

We set out to investigate the possible mechanisms
and principles subserving the flicker illusion. We first
clarify whether a sound is the source of a simple
disturbing signal, or whether it really triggers a
perceived flash similar to a real flash. We then attempt
to shed light on the mechanisms subserving the illusory
flashes.

Experiment I

The first experiment was designed to confirm that
our method could elicit an illusion; we then checked
whether the triggered illusion was more than a change
in the criterion level.

Methods

Participants

Eleven volunteer university students (mean age: 23.7
years, six males) with normal or corrected to normal
vision participated in the experiment. All data origi-
nating from every person in every experiment was
evaluated.

Setup

In all experiments stimuli were generated on an
Apple MacBook Pro laptop computer (Apple, Cuper-
tino, CA) in a dark room and were presented using a
ViewSonic CRT monitor (21-inch, 800 · 600 pixel
resolution, 60-Hz refresh rate; ViewSonic, Walnut,
CA). Subjects were seated with their eyes 57 cm away
from the screen to cover 18 area on the retina with the
stimuli; their heads were supported by a chin rest. The
experiments were run in MATLAB (MathWorks,
Natick, MA) using the Psychophysics Toolbox exten-
sions (Brainard, 1997; Pelli, 1997; Kleiner, Brainard, &
Pelli, 2007).

Stimuli

Stimuli were high-contrast light spots of circles
(diameter 18) on a 33 cd/m2 gray background. The
subjects were asked to fixate the stimulus in the middle
of the screen (target stimulus); the inducer was the
other spot of circle, placed at 78 horizontally, on the
periphery, to the right (Figure 1). Fixation mark was

Figure 1. Stimulus arrangement. The target stimulus on the left,

located in the middle on the screen, also serves as a fixation

point. The inducer (on the right) is situated 78 away, in the

periphery. The diameter of both stimuli is 18. The background is

a 25% gray. Please note, that for clarity the stimulus size is

largely exaggerated.
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not displayed on the screen (Shams et al., 2000;
Chatterjee et al., 2011). The target stimulus was first
presented once for the duration of one frame (16 ms);
the first flash of the inducer was timed simultaneously
with the target onset, but a further second, third, or
fourth inducer flash could be presented to induce the
illusory flashes of the target stimulus. Between two
flashes, only the gray background was visible for four
frames (interstimulus interval, 64 ms). Depending on
the number of inducer flashes (one to four), four
stimulus types were used, which were presented 30
times each giving a total of 120 trials, presented in a
pseudorandom order.

Thus, in Experiment I the following stimuli were
presented: type 1, both the target and the inducer
flashed once; type 2, the target flashed once, while the
inducer flashed twice; type 3, the target flashed once,
while the inducer flashed three times, and so forth. The
task of the participants was to indicate by pressing the
keyboard keys the number of perceived flashes, which
could vary between one and four. The session
continued, and a new trial started only once a response
was given (i.e., a keyboard press was detected by the
program). There was no feedback given about the
correctness of the response.

Depending on the aim, the stimuli were modified in
Experiments II and III, forming further conditions (see
the corresponding Method sections).

In this study, the illusion presented a situation in
which the subjects indicated the presence of a
nonexistent stimulus (a false-positive response). In
terms of signal detection theory, this corresponds to a
false alarm (FA). We calculated the mean numbers of
FAs in the categories for every stimulus type across
subjects (FA1–4). FAs may originate from a dysfunc-
tion or ‘‘noise’’ in the perceptual system or from
perceiving the illusory flashes of the targets. We
therefore classified the FAs into two main groups. The
first group contained trials in which both the target and
the inducer flashed only once; there was no illusion
(FA1). The second group contained trials in which the
target flashed once and the inducer two, three, or four
times. There were illusions in this group (FA2, FA3,
and FA4). The first group was used to set a baseline for
subtraction from the data on illusory groups; in this
way the estimated number of illusions, phantom delta,
was determined; for example, D2¼ FA2 � FA1.

Due to interindividual differences an experimental
subject might be more or less susceptible to seeing an
illusory flash (d0). The name d0, however, comes from
signal detection theory and is used to describe the
sensitivity (Green & Swets, 1966). In order to follow the
logic of signal detection theory, we used the term
sensitivity in our study, although the term susceptibility
would have perhaps been a more appropriate expres-
sion.

Signal detection analysis was applied to calculate the
sensitivity (d’) and the criterion level (c). Criterion level
(c) calculation was based on the ration of correct hits
and false alarms as described in the literature (Green &
Swets, 1966; Gardner et al., 1984) and d0 was calculated
from the hit rate (H) and the distribution of the FAs via
the formula d0¼ z(FA)� z(H) where z stands for the z-
score. The more sensitive the system is to a signal, the
higher the absolute value of d’. This allowed us to figure
out what appears in the percept. The extent to which
the subject tended to give a false-positive response to a
nonexisting stimulus was defined by the value of c,
determined from the distribution of the false-positive
responses.

Throughout the study, one-way repeated measure-
ment ANOVA with the Greenhouse–Geisser correction
(Geisser & Greenhouse, 1958) and Dunnett’s multiple
comparisons tests were used (Dunnett, 1955), in which
the flashes of the inducers served as the main factor and
the mean number of perceived flashes as the dependent
variable.

Results and discussion

The method proved to be a suitable means for
eliciting an illusion and in cases when an illusion was
present, both c and d’ seemed to decrease. A higher
number of FAs was detected when the inducer flashed
only once as compared to when it flashed several times;
flashing the inducer twice resulted in a relatively low
number of phantom flashes (D2 ¼ 0.187), while three
inducer flashes resulted in a considerable increase (D3¼
0.627; Figure 2). ANOVA indicated F(1.549, 13.94) ¼
40.44 (p , 0.0001) that whereas two flashes did not
evoke an illusion, three and four flashes did so in about
62% of the trials. Considerable changes were detected
in both d0 and c if the number of inducer flashes was
varied (for type 1, d0 was 0.93; for type 2, d0 was�0.03,
and for type 3, d0 was �1.55), while the corresponding
values of c were 0.47, 0, and�3.18, respectively,
demonstrating that change in c played a substantial
role in the number of reported flashes. Accordingly, our
method was capable of inducing illusory flashes. The
fact that several flashes of the inducer resulted in
changes in both c and d’ suggested that the perception
of several flashes of the target stimulus cannot be
explained solely by the more ‘‘liberal’’ tendency to
report more than one flash.

Experiment II

In Experiment I we checked whether the target and
the flicker illusion produced the same perceptual

Journal of Vision (2014) 14(3):6, 1–11 Csibri, Kaposvári, & Sáry 3



experience. Next we investigated whether the illusory
flashes had the same or opposite polarity as the
preceding (target) stimulus. Polarity in this case meant
a difference in brightness relative to the background
(Figure 3).

In sensory integration one stimulus frequently
predominates over the other one; this predominance is
probably also present in the case of congruent stimuli,
but the phenomenon is usually investigated for
incongruent stimuli (Stein & Stanford, 2008; Shams &
Kim, 2010; Gori, Sandini, & Burr, 2012). Stimuli can be
modified in such a way that, after the first flash of the
target, the target continues to flash simultaneously with
the inducers. If illusory flashes have the same polarity
as the target stimuli, then a second, (low-contrast)
target stimulus that matches the polarity of the first,
high-contrast stimulus may be supported by the illusory
flash, while a second, (low-contrast) target stimulus
with the opposite polarity might be attenuated by the
illusory flash.

Experiment II was designed so that the first high-
contrast target stimulus was followed by low-contrast
flashes of the same target stimulus that had either the
same (same-polarity subcondition) or the opposite
polarity (opposite-polarity subcondition), while the
inducer was used to trigger the illusion as described
previously (Figure 3). It is important to note that in this
experiment D depended not only on the phantom
flashes but additionally on the existing, low-contrast
flashes as well. Thus, similar to the previous experi-
ment, significant differences between the stimulus types
proved that the low-contrast value of the target flashes

had been successfully set around the perceptual
threshold. According to our hypothesis, the perception
induction of the illusion would differ under the same-
polarity and opposite-polarity subconditions.

Methods

Participants

Ten new volunteer subjects, university students
(mean age: 23.9 years, four males) with normal or
corrected to normal vision participated in the study. All
subjects and all results were included in the statistics.

Stimuli

The stimuli used in Experiment I were modified:
after the first flash of the target, the target continued to
flash on its original location simultaneously with the
inducers, but it was changed to have a lower contrast.

Two conditions were produced this way. If the first
flash of the target was physically brighter than the
background, the condition was called bright, and if it
was darker than the background, it was called dark. In
terms of Weber’s law, in the first condition the stimulus
had a positive contrast value, while in the second it had
a negative contrast value.

Each of the conditions had two subconditions.
Depending on whether flashes following the first flash
of the target had the same polarity (i.e., in the bright
condition, they were still brighter than the background)

Figure 2. The mean number of phantom flashes as a function of the number of inducer flashes. Ordinate: mean number of phantom

flashes (D). Abscissa: number of inducer flashes. Data points are means 6 SEM.
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or not, they were called same-polarity and opposite-
polarity subcondition, respectively.

Thus, in the first (bright) condition the first, high-
contrast ‘‘target’’ (lighter than the background) flash
was followed by low-contrast target flashes, with either
the same (same-polarity subcondition) or the opposite
(opposite-polarity subcondition, Figure 3) polarity as
compared to the first target flash.

In the second (dark) condition, the first, high-
contrast (darker than the background) flash was
followed by a low-contrast flash, with either the same
(same-polarity subcondition) or the opposite polarity
(opposite-polarity subcondition). Depending on the
number of inducer flashes each of the subconditions
contained four stimulus types, as described in Exper-
iment I and were presented in a pseudorandom order.

Stimuli having a high contrast are easy to separate
from the background (ceiling effect), while success rate
in separating stimuli having a low contrast is only
79.37% (Kingdom & Prins, 2009). For every partici-
pant, contrast values were individually determined in a
pilot experiment, for both the light and the dark
conditions. In this test, the participants had to report
when the target stimulus flashed more than once. When

the contrast was determined, the high-contrast target
stimulus and the peripheral inducer were always
flashed; in 50% of the trials, a second stimulus was
flashed at the location of the target stimulus the
parameters of this second stimulus varying with the
performance of the participants. In this way, the
contrast value of the second flash stimulus was
determined for both the light and dark, same-polarity
conditions. Inducers were flashed one to four times.
The inducer was not modified in this experiment.

Results and discussion

While evaluating the results, we investigated the
detectability of low-contrast flashes, with the same or
opposite polarity following the high-contrast flashes.

In the light condition, in which the first flash was
brighter than the background, in the same-polarity
subcondition one flash of the inducer resulted in D ¼
0.163, two flashes resulted in D¼ 0.521, three flashes
resulted in D ¼ 0.957, and four flashes resulted in D ¼
0.963 phantom flashes, respectively. The numbers of
phantom flashes were significantly different when

Figure 3. Stimulus arrangement in Experiment II. The figure shows the stimuli used in the light condition, in which the first stimulus

was a light spot of circle with high contrast. Please note, that for clarity the stimulus size is largely exaggerated. The two subconditions

show the same-polarity subcondition (A) and the opposite polarity subcondition (B). Time scale shows timing of the first stimulus, the

target, simultaneously with the inducer (stimulus 1). Both were presented for 16 ms (one frame). This is followed by the interstimulus

interval (ISI), which lasted for 64 ms (four frames). Stimulus 2 (target and the inducer) was presented for 16 ms (one frame). Stimulus

2 either consists of a low-contrast target, having the same polarity as the high-contrast target (A), or the opposite polarity (B).

Depending on the stimulus (i.e., how many low contrast flashes are presented after the high contrast flash), stimulus 2 can be

presented zero to three times.
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compared to the one-flash case, F(1.544, 13.90)¼ 77.22,
p , 0.0001. In the subcondition involving opposite
polarities, one, two, three, and four flashes of the
inducer resulted in D¼ 0.147, D¼ 0.421, D¼ 0.521, and
D ¼ 0.731 perceived flashes, respectively. The latter
three values of perceived flashes were significantly
different from that in the type 1 condition, F(2.554,
22.99) ¼ 23.88, p , 0.0001.

Our results confirm the literature claim (Chatterjee et
al., 2011) that statistically verified illusory flashes were
likely to occur when the inducer is flashed three times.
Figure 4 shows the separation of the lines illustrating
the number of phantom flashes starting from the type 3
condition.

In the opposite-polarity subcondition, the detect-
ability of the target stimulus did not change when the
inducer flashed three times, but a moderate increase
was seen in the case of four flashes, F(2.554, 22.99) ¼
23.88, p , 0.0001. On the other hand, in the same-
polarity subcondition the number of perceived flashes
in the case of three inducer flashes was significantly
higher than when the inducer flashed only twice,
F(1.544, 13.90) ¼ 77.22, p , 0.0001. There was
statistically no significant difference in the perception
between the type 1 stimuli of the opposite-polarity
subcondition and the same-polarity subcondition
(mean difference¼ 0.015). Neither was there significant
difference in the perception between the type 2 stimuli
of the same subconditions (mean difference¼ 0.257). In
the same subconditions, using the type 3 stimuli,

however, we found significant differences (mean
difference¼�0.357). This was to be expected since
previous results in this study indicated the emerging of
the illusory flashes. Further, using the type 4 stimuli in
the same subconditions resulted in significant differ-
ences as well (mean difference ¼�0.568), ANOVA
F(3,72) ¼ 4.833, p ¼ 0.004. We therefore hypothesize
that the illusory flash is perceptually similar to a real
flash.

In the dark condition (Figure 5), one flash of the
inducer in the opposite-polarity subcondition resulted
in D¼ 0.238; two flashes in D¼ 0.691; three flashes in D
¼ 0.957; and four flashes in D¼ 0.946 perceived flashes.
The latter three numbers of perceived flashes were
significantly different from that in the one-flash
condition, F(1.714, 15.42) ¼ 44.18, p , 0.0001. In the
same-polarity subcondition, one flash of the inducer
resulted in D ¼ 0.163; two flashes in D¼ 0.466; three
flashes in D ¼ 0.893; and four flashes in D ¼ 0.925
perceived flashes. The latter three numbers of perceived
flashes were once again significantly different from that
in the one-flash case, F(1.472, 13.25) ¼ 42.63, p ,

0.0001. There was no significant difference (interaction)
between the subconditions, F(3, 72)¼ 1.021, p¼ 0.3885.
Since the results obtained in the two subconditions did
not differ significantly, we concluded that an illusory
flash was not induced in this condition, and therefore
no further analysis was performed.

Figure 4. The mean number of phantom flashes as a function of the number of inducer flashes in the light condition. The line with the

circles relates to the subcondition in which the contrast polarity was the same as that of the flash of the target stimulus. The line with

the squares relates to the subcondition in which the contrast polarity was the opposite of that of the flash of the target stimulus. Data

points are means 6 SEM.
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Experiment III

This experiment was designed to determine the logic
of processing behind the phenomenon. There are
several potential explanations as to how one stimulus
can influence the perception of another. While the
modality appropriateness hypothesis explains the
dominance from the receptor side, the information
reliability hypothesis and the discontinuity hypothesis
do so from the stimulus side (Hove, Fairhurst, Kotz, &
Keller, 2013). To decide what principle is involved, we
performed a factorial experiment to test these three
hypotheses.

Modality appropriateness

The characteristics of the visual areas that process a
particular stimulus can clearly influence the processing
(Schwartz, Robert-Ribes, & Escudier, 1998). A good
example in multimodal stimulus perception is when the
better temporal resolution of hearing complements the
processing of visual stimuli in the temporal domain
(double flash illusion), or, in the opposite case, when
the better spatial resolution of visual processing
complements the perception of auditory stimuli (ven-

triloquism). In these cases, the particular modality that
dominates in the given situation is usually the one with
the better resolving power. According to this logic,
illusions triggered in both the fovea and the periphery
of the retina could argue against this hypothesis; the
triggering of an illusion at the periphery of the visual
field by flashes in the center would argue against the
idea that better temporal resolution at the periphery
promotes predominance of the center.

Information reliability

Modality predominance can also be explained by the
quality of the stimuli. A predominant modality is
determined not only by the more precise processing
capability, but also by the reliability of the information
(Welch & Warren, 1980). This is naturally closely
related to the previous hypothesis, since the more
accurate the processing of a given dimension in a
modality, the more reliable the information will be,
even if it is ambivalent. As described previously a
79.37% threshold was determined overall for the
peripheral stimuli, and this was used as low-contrast
stimulus for the tests. Theory predicts several changes.
First, the use of a low-contrast inducer should result in
a weaker central illusion. Further, the illusion should

Figure 5. The mean number of phantom flashes as a function of the number of inducer flashes in the dark condition. The line with the

circles relates to the subcondition in which the contrast polarity was the same as that of the flash of the target stimulus. The line with

the squares relates to the subcondition in which the contrast polarity was the opposite of that of the flash of the target stimulus. Data

points are means 6 SEM.
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also be present in the periphery when low-contrast
flashes are used, since the stimulus coming from here is
less reliable if a high-contrast stimulus is used at the
same time, in the center.

Discontinuity

Another explanation could be the discontinuity
hypothesis (Shams, Kamitani, & Shimojo, 2002), which
emphasizes the temporal parameters of the stimulus
rather than the strength of the double flash illusion.
According to this idea, discontinuous stimuli (individ-
ual flashes in our case) predominate in interactions, as
do peripheral flashes over foveal flashes. In other
words, a periodic modality has a larger impact on the
sensory systems than a continuous one. This hypothesis
could explain the robustness of the illusion, for an
illusion should be expected at the periphery, too. If
illusions follow this logic, we could expect this
independent of the retinal location; several flashes on
the fovea should induce illusory flashes on the
periphery, and fusion should not be observed.

Methods

Participants

A new group of 10 volunteer university students
(mean age: 24.1 years, four males) with normal or
corrected to normal vision participated in this study. As
in the previous experiments, no subjects and no data
were excluded.

Stimuli

As in the previous experiments, the participants were
asked to detect flashes of the target stimulus (flashed
once only) in the presence of one to four flashes of the
inducer. They were requested to fixate the central
stimulus; the target could be the central or the
peripheral stimulus. The experiment had two condi-
tions. In the first, both the central and the peripheral
stimuli had high contrasts (high-contrast condition). In
the second, the peripheral stimuli had the previously
individually determined contrast (low-contrast condi-
tion).

Results and discussion

The number of illusory flashes was determined as in
Experiment I. To obtain the phantom flash D, the
number of FAs under the nonillusory conditions was
subtracted from that under the illusory conditions. In
the first condition, type 2 stimuli resulted in D¼ 0.131,

type 3 stimuli in D ¼ 0.426, and type 4 stimuli in D ¼
0.442, F(2.244, 20.19)¼ 25.34, p , 0.0001. Two flashes
triggered flicker illusion (Figure 6A). When the target
stimulus was positioned in the periphery, the illusion
became weaker, but did not disappear. Two flashes
resulted in D ¼ 0.326, three flashes in D ¼ 0.368, and
four flashes in D ¼ 0.315, F(1.977, 17.79) ¼ 12.09, p¼
0.0005 (Figure 6B). In the second condition, where the
target was at the center, low-contrast peripheral flashes
did not induce the illusory flash (D ¼ 0.115), F(1.571,
14.14) ¼ 2.562, p¼ 0.1207 (Figure 6C). Feedback
derived from the responses of the participants to flashes
at the periphery indicated that a central stimulus
elicited a weak illusory flash. Two flashes resulted in D
¼ 0.147, three flashes in D¼ 0.336, and four flashes D¼
0.347, F(1.977, 17.79) ¼ 12.09, p¼ 0.0005. The low-
contrast target was flashing at the periphery, and the
high-contrast inducer at the center (Figure 6D). The
illusion was induced both at the center and at the
periphery, which supports the discontinuity hypothesis.
Even though the illusion was not present when the low-
contrast inducer was used, the peripherally presented,
low-contrast target stimulus with the central low-
contrast inducer did induce the illusion. This supports
the information reliability hypothesis. The modality
appropriateness hypothesis can be excluded since
illusions were successfully triggered in the periphery.

To check the discontinuity hypothesis, we created a
fused condition in which four flashes of the target
stimulus were linked to zero to four flashes of the
inducer. In accordance with an earlier report (Ander-
sen, Tiippana, & Sams, 2004), we did not observe any
fusion effect, F(1, 9) ¼ 0.008876, p ¼ 0.9270.

Conclusions

According to our results an increase in the number of
flashes of the inducers resulted in an increased
probability in indicating several flashes by the partic-
ipants. Moreover, our results led us to the conclusion
that the increase in the number of phantom flashes in
the illusory condition were based, at least partly, on a
real perceptual phenomenon (a visually based deci-
sion), similar to the case of multimodal, audiovisual
(Shams et al., 2002), and haptic visual illusion studies
(Violentyev, Shimojo, & Shams, 2005).

Since the subcondition involving the same polarity
increased the number of phantom flashes in the light
condition, while the opposite polarity decreased it, we
hypothesize that the illusion has a real polarity that
matches the preceding flash. We may therefore reject
the hypothesis of a decreased sensitivity of negative
after-images behind the multiple flashes. If this was the
case, the perceived number of flashes would have been
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increased by the low-contrast flashes that had the
opposite polarity to that of the high-contrast flashes.

The mechanism of the illusion might be explained by
the results of the third experiment. Centrally evoked
successful illusions at the periphery disprove the theory
of modality appropriateness and support the informa-
tion reliability theory. This seems to be in accord with
the finding that the probability of inducing the illusion
is clearly dependent on the reliability of the target and
inducer stimuli. Stimulus reliability seems to be a factor
that influences the degree of predominance in forming
the percept. These results also support the stimulus
discontinuity effect as a possible factor elevating the
predominance of a particular stimulus, especially since
we failed to detect a fusion effect. Thus, we consider
that it is rather the stimulus continuity and reliability
than the better temporal resolution of the periphery
that lies behind the phenomenon.

Nonetheless, it must be noted, that the picture is far
from being complete. Attention directed to the
periphery may well be a more difficult task. The
components of our paradigm that were not aimed to
control attention may have caused bias. In this case, we
could not control the attentional effects.

It is well known that stimuli presented simulta-
neously tend to be perceived as arriving from the same
source (Watanabe & Shimojo, 2001) and that stimuli
processed in a parallel fashion may be linked together

in a rather long temporal window (Stein & Meredith,
1990). Our illusions might rest on perceiving the stimuli
from the same source. This effect is not random; faced
with an ambiguous or conflicting situation, the system
will build the percept based on the most reliable
information.

The character of the results might also suggest the
participation of subcortical structures, such as the
superior colliculus, but the cause is more likely a link
within the primary sensory cortex. For a better
understanding of the mechanism and the neurophysi-
ological background, EEG and single-cell recordings
currently under way in our laboratory may be of
importance.

Keywords: flicker, contextual, illusion, temporal
vision, integration
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