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Abstract

We investigate the scattering of electrons on a hard sphere in the presence of a laser field of arbitrary intensity. We use
spherical Gordon-Volkov states, and we present a novel method for the computation of a key quantity in this theory.
We compute and analyse some additional results regarding the total differential scattering cross sections in the case of
the weak field limit.
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1. Introduction

Laser-assisted electron scattering has been widely
studied in the past, primarily in the context of multipho-
ton Bremsstrahlung and plasma heating [1]. Recently
the application of this process has received a growing
importance in various branches of research aiming, for
instance, the generation of ultrashort (even attosecond)
electron pulses [2, 3, 4], four-dimensional imaging and
ultrafast electron microscopy [5, 6], or photon-induced
near field electron microscopy [7, 8, 9]. The theoreti-
cal description of laser-assisted scattering processes of
charged particles relies on the non-perturbative treat-
ment of the interaction with the laser field [10, 11, 12],
which is usually based on the Volkov states being mod-
ified de Broglie plane waves. The exact analytic treat-
ment of this problem has already been carried out in
an earlier study by one of the authors [10], and several
closed-form results have been derived there.

In this contribution, we study a simple model for elec-
tron scattering on a nano-particle in the presence of a
laser field. After summarizing the theoretical frame-
work of [10], we present a novel method for the accu-
rate and effective computation of a key quantity Pm in
the matching equations that determine the quantum state
of the scattered electrons. We compute and analyse the
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electron wave function and the total differential scatter-
ing cross sections in the weak field limit, and draw some
conclusions.

2. Model and solution

We consider electron scattering on a nano-particle in
the presence of a low-frequency laser field, modelled as
a plane wave with linear polarization in the z direction,
see Figure 1. The electrons are considered indepen-
dent and they are described by the Schrödinger equa-
tion, their interaction with the laser field is taken into
account by the usual minimal coupling, and we choose
the Coulomb gauge. The long wavelength of the laser
field justifies the use of the dipole approximation, thus
the vector potential is

A = (0, 0, A0 cosωt). (1)

The incident electrons of charge −e and mass M propa-
gate in an arbitrary direction defined by the polar an-
gles Θ0 and φ0. By means of a well-known unitary
transformation, we can eliminate the interaction term
e2A2/2Mc2 and hence the relevant part of the wave
function of our scattering problem obeys the following
Schrödinger equation:[

p̂2

2M
+

e
Mc

A · p̂
]
Ψ = i~

∂

∂t
Ψ, (2)
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Figure 1: Geometry of the model for electron scattering on a nano-
particle in the presence of a linearly polarized laser field, see the text
for details.

where p̂ = −i~∇. With the help of the Kramers-
Henneberger transformation

Ψ = exp
[−a sinωt∇z

]
Φ(x, y, z; t), (3)

the Schrödinger equation (2) is transformed into the
free-particle Schrödinger equation:

− ~2

2M
∇2Φ = i~

∂Φ

∂t
. (4)

The space-translation of the solution Φ of (4) as

Ψ = Φ(x, y, z − a sinωt; t) (5)

yields the solution Ψ of (2) in the laboratory frame (see
Fig. 1). Here a = eA0/Mωc = µo, where µ = eA0/Mc2

is the intensity parameter.
In order to facilitate analytic treatment, we assume

that the scattering target is a hard sphere of radius R on
which the potential V = ∞ and outside of which V = 0.
Thus, we impose the following boundary condition on
our space-translated solution (5):

Φ(x, y, z − a sinωt; t)|r=R = 0, (6)

which must hold for all times t and all polar angles Θ
and φ.

2.1. Solution by expansion on spherical Gordon-Volkov
states

In order to satisfy the condition (6), it is conve-
nient to introduce spherical polar coordinates (r,Θ, φ)
taking as usual the z-axis as the polar axis. Writ-
ing down the Schrödinger equation (2) in these coor-
dinates, the term representing the interaction with the
radiation field is independent of the azimuth φ as is
the boundary condition (6). However, if the incom-
ing electron wave will be chosen to be dependent on
φ, then the total scattering wave function must be φ
dependent as well, which means there is no cylindri-
cal symmetry with respect to the z-axis. If we write
r ≡ r (sinΘ cosφ, sinΘ sinφ, cosΘ) and similarly rep-
resent the wave vector of the ingoing free electron by
k0 ≡ k0 (sinΘ0 cosφ0, sinΘ0 sinφ0, cosΘ0) then we
find k0 · r = k0r (sinΘ0 sinΘ cosφ − φ0 + cosΘ cosΘ0)
and therefore the cylindrical symmetry can only be ob-
tained if we choose Θ0 = 0, and this corresponds to an
electron beam coming in along the vector of linear po-
larization of the laser field. This is also a configuration
for which a maximum of interaction between the elec-
tron and radiation field can be expected.

In view of these considerations, we attempt to solve
(4) by the ansatz

Φ = exp [i (k0 · r − ω0t)] +
∞∑

l=0

l∑
m=−l

∞∑
n=−∞

h(1)
l (knr)

Pm
l (cosΘ) exp (imφ)A (n, l,m) exp [−i (ω0 + nω) t],

(7)

where E0 = ~ω0 is the energy of the scattered electrons
in the absence of the laser field and h(1)

l (knr) Ym
l (Θ, φ) =

fn,l,m(r,Θ, φ) are outgoing spherical waves satisfying the
Helmholtz equation{

∇2(r,Θ, φ) + k2
n

}
fn,l,m = 0. (8)

The h(1)
l (knr) are spherical Hankel functions of the first

kind and the Ym
l (Θ, φ) are ordinary spherical harmonics.

In the laser field, the wave numbers kn of the scattered
electrons are given by

kn =

√
2M(E0 + n~ω)

~
= k0

√
1 + n

ω

ω0
, (9)

which can be real or purely imaginary, depending on
the value of the integer n for a given ω/ω0. If the kn are
purely imaginary, the spherical Hankel functions repre-
sent exponential decay of the partial waves. This means
that the laser field can induce evanescent partial elec-
tron waves bound to the surface of the sphere. In (7) the
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coefficients A(n, l,m) are so far unknown and have to be
determined by means of the boundary condition (6).

Because of (5) and (7) the total wave function Ψ can
be written in the space-translated form

Ψ = exp {i [k0 · r − k0 cosΘ0a sinωt]}

+

∞∑
l=0

l∑
m=−l

∞∑
n=−∞

A (n, l,m) h(1)
l [knr(t)]

· Pm
l [cosΘ(t)] exp (imφ) exp [−i (ω0 + nω) t],

(10)

where r(t) and Θ(t) are the space-shifted polar coordi-
nates. According to (10), the wave function is a su-
perposition of an incoming plane Gordon-Volkov state
[13, 14] and outgoing spherical Gordon-Volkov states
with energies E0 + n~ω, corresponding to stimulated
photon emission and absorption. In (10), the explicit
expressions for r(t) and Θ(t) are given by

r(t) =
√

r2 − 2rα(t) cosΘ + α(t)2 (11)

cosΘ(t) =
z − α(t)

r(t)
=

r cosΘ − α(t)√
r2 − 2rα(t) cosΘ + α(t)2

(12)
where

α(t) = a sinωt, a =
eA0

Mωc
= µo. (13)

In order to be able to evaluate the coefficients A(n, l,m)
from the boundary condition (6), we first have to deter-
mine the explicit form of the spherical Gordon-Volkov
states fn,l,m(r(t),Θ(t), φ) = h(1)

l (knr(t)) Ym
l (Θ(t), φ) in

terms of the ordinary spherical waves fn,l,m(r,Θ, φ) =
h(1)

l (knr) Ym
l (Θ, φ). This calculation was already carried

out by one of the authors [10].
Then, according to (7), the total wave function can

be written as the sum of an incoming wave Ψinc and a
scattered wave Ψscatt in the laboratory frame. The inci-
dent Gordon-Volkov plane wave has then the following
form:

Ψinc =
∑
n,l,m

Jn(k0a cosΘ0)il(2l + 1)
(l − m)!
(l + m)!

jl(k0r)

Pm
l (cosΘ0)Pm

l (cosΘ) exp
[
im(φ − φ0)

]
exp (−iωnt).

(14)

The scattered waves are outgoing spherical Gordon-
Volkov states with energies ~(ω0 + nω) = ~ωn, they
may be written in terms of ordinary spherical outgoing

waves

Ψscatt =
∑

n′,l′,m′

∑
n′′,l′′

il
′−l′′(2l′′ + 1)A(n′, l′,m′)h(1)

l′′ (kn′r)

Pm′ (l′, l′′; n′′|kn′a)Pm′
l′′ (cosΘ) exp

[
im′φ

]
exp (−iωn′+n′′ t).

(15)

where the kernel

Pm(l, l′; s|kna) ≡ 1
2

(l′ − m)!
(l′ − m)!

1∫
−1

Pm
l (x)Pm

l′ (x)Js(−knax).

(16)

will be evaluated in the next subsection.
Taking into account (14) and (15) we obtain from the

boundary condition (6) in the form[
Ψ(r,Θ, φ, t) = Ψinc + Ψscatt

]
r=R = 0 (17)

the following matching equations

Jn(k0a cosΘ0)il
(l − m)!
(l + m)!

jl(k0R)Pm
l (cosΘ0) exp (−imφ0)

+
∑
n′,l′

il
′−lA(n′, l′,m)h(1)

l (kn′R)Pm(l′, l; n − n′|kn′a) = 0,

(18)

where the orthogonality of the spherical harmonics
Ym

l (Θ, φ) and the orthogonality of the different Fourier
components in t have been used. From (18) the so far
unknown coefficients A(n, l,m) can be evaluated.

2.2. Evaluation of the kernel Pm(l′, l; n − n′|kn′a)

The kernels Pm(l′, l; n − n′|kn′a) defined by (16) can
be evaluated numerically, but this is a rather demanding
task, because high precision is needed, due to the struc-
ture of the matching equations. Instead, we outline here,
how to compute these quantities accurately and effec-
tively, in terms of of hypergeometric functions, without
numerical integration.

We can expand the product of two associated Legen-
dre polynomials in the integrand as a sum of associated
Legendre polynomials [15, 16, 17]. We use Balmino’s
product-sum relationship for the associated Legendre
polynomials [15]:

Pm
l (x)Pq

j(x) =
l+ j∑

k=max(|m+q|,|l− j|)
[l+k+ j: even]

Qk
lm jqP|m+q|

k (x), (19)
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where

Qk
lm jq =

2k + 1
2l+ j+k+1

[k − (m + q)]!
(k + m + q)!

m+q∑
p=0

(−1)p
(
m + q

p

)
[(l−m)/2]∑

r=0

(−1)rHr
lm

[( j−q)/2]∑
s=0

(−1)sHs
jq

[(k−(m+q))/2]∑
ν=0

(−1)νHνk,m+q

1 + (−1)l+ j+k

l + k + j + 1 − 2(m + q) + 2(p − r − s − ν) ,

(20)

with
Hγαβ =

(2α − 2γ)!
γ!(α − γ)!(α − β − 2γ)!

. (21)

We note that for m = 0 and p = 0, the expansion is
well known, see formula (8.915.5) of Gradshteyn and
Ryzhik.[18]

It is now sufficient to determine the integral of the
product of one associated Legendre polynomial and a
Bessel function of the first kind. The associated Leg-
endre polynomial can be expressed with the ordinary
Legendre polynomial

Pm
l (x) = (−1)m(1 − x2)m/2 dm

dxm Pl(x). (22)

Using the power series expansion of the Legendre poly-
nomial

Pl(x) = 2l
∞∑

k=0

(
l
k

)( l+k−1
2

l

)
xk, (23)

we can now write the associated Legendre polynomial
in the form

Pm
l (x) = (−1)m(1−x2)m/2

l∑
k=0

(
l
k

)( l+k−1
2

l

)
2l k! xk−m

(k − m)!
(24)

The integral of a product of a power function and a
Bessel function of the first kind reads

1∫
−1

xk Js(−knax) =
2l−s−1Γ

(
m
2 + 1

) (
k+l−1

2

)
!(

k−l−1
2

)
!(l − k)!(k − m)!

·
[
(−1)k(kna)s + (−1)m(−kna)s

]
Γ

(
k − m + s + 1

2

)
· 1F̃2

[
k − m + s + 1

2
;

k + s + 3
2

, s + 1;− (kna)2

4

]
,

(25)

where 1F̃2 is the regularized hypergeometric function
defined by

1F̃2 =
1F2(a1; b1, b2, z)
Γ(b1)Γ(b2)

, (26)

and 1F2(a1; b1, b2, z) is a generalized hypergeometric
function. Thus the kernels Pm(l′, l; n − n′|kn′a) can be
computed with a finite sum of hypergeometric func-
tions. We note that this quantity also appears in re-
cent works on laser-assisted electron scattering, see e.g.,
Refs. [11, 12].

3. Results

We consider the low intensity limiting case where the
intensity parameter µ ≪ 1. It can be easily shown that
the coefficients A(n, l,m) are no longer coupled in that
case, and we have an explicit solution for them as

A(n, l,m) = −il(2l + 1)
(l − m)!
(l + m)!

jl(k0R)

h(1)
l (knR)

· Pm
l (cosΘ0) exp (−imφ0)Jn(k0a cosΘ0).

(27)

The total differential cross sections can be obtained
through the asymptotic form of the scattered wave func-
tion. Inserting (27) into the expression of the scattered
wave function and taking the limit r → ∞, the total dif-
ferential cross sections read

dσn

dΩ
=

kn

k0

∣∣∣∣∣∣∣ 1
kn

∞∑
l=0

(2l + 1)
jl(k0R)

h(1)
l (knR)

Pl(cos γ0)

∣∣∣∣∣∣∣
2

· J2
n(k0a cosΘ0),

(28)

where

cos γ0 = cosΘ cosΘ0 + sinΘ sinΘ0 cos (φ − φ0). (29)

The wave function (5) is expressed in terms of a
nested infinite series. It is obvious that an analytic ex-
pression cannot be achieved, numerical evaluations are
required. The accuracy of the wavefunction and the to-
tal differential cross sections depends on the truncation
of the infinite series. In our results, the boundary con-
dition (17) is accurately satisfied, i.e., the real and the
imaginary part of the wave function on the boundary is
less than 10−6, if we choose the upper limit of the series
to be L = 50 − 60, depending on various parameters.

First, we show plots of the logarithm of the probabil-
ity density of the total wave function (10), in the x − z
plane, around a hard sphere of 5 nm radius, without the
laser field in Figure 2, and in the presence of the laser
field in Figure 3 (assuming the weak field limit). In the
presence of the laser field, interference fringes appear
in the shadow region behind the nano-sphere, due to the
multiphoton processes between the laser field and the
electron.
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Figure 4 shows the total differential cross section of
the nth scattering channel as a function of the polar an-
gle Θ, in a polar plot. Since we choose Θ0 = 0 for
the incoming electrons, it is plausible to study the direc-
tional dependence in the x − z plane where the azimuth
φ is zero. These plots show that the more energy is lost
or gained by the electrons in form of photons, the wider
(and in the case of energy loss also the more structured)
the angular dependence becomes, along with increasing
possibility of backscattering.

In Figure 5, we focus on forward scattering, where
the scattering angle Θ is chosen to be zero and we set
the values for the field strength such that the weak field
limit condition still holds. The total differential cross
section is plotted as a function of the electron energy in
the nth channel. The positive and the negative values of
n correspond to stimulated photon absorption and emis-
sion, respectively. It is clearly shown by this plot, that
the sidebands n , 0 get more populated with increasing
laser field strength [9].

If the low intensity assumption is released, then the
linear system of equations is coupled, and we can trun-
cate the system only at a much larger value of n, in order
to ensure convergence. At a qualitative level, we expect
that the higher order sidebands get more populated at
the expense of the central (n = 0) band’s significant re-
duction, and that the interference patterns in the electron
probability density become more pronounced.

Figure 2: Density plot of the logarithm of the probability density of
the total electron wave function, in the x − z plane, around a hard
sphere of 5 nm radius, in the absence of the laser field, with incoming
electron energy E0 = 0.25 eV.

Figure 3: Density plot of the logarithm of the probability density of
the total electron wave function, in the x−z plane, around a hard sphere
of 5 nm radius, assuming the weak field limit. Parameters: incoming
electron energy E0 = 0.25 eV, photon energy ~ω = 1.5 eV.

4. Summary

We presented theoretical results in connection with
laser-assisted electron scattering on a nano-sphere. We
outlined a novel method for the accurate and effective
computation of the kernel necessary for the solution of
the matching equations. We presented and analysed par-
ticular results regarding the total differential scattering
cross sections. Our results can also be applied for char-
acterizing the multiphoton-multipole components of the
electron de Broglie waves scattered by nanostructures
like metal nanoparticles embedded in dielectrics.
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S. Varró has been supported by the National Scien-
tific Research Foundation OTKA, Grant No. K 104260.
The project was partially funded by ”TÁMOP-4.2.2.D-
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Figure 4: Polar plots of the total differential cross section as a function
of the polar angle, in relative units normalized to the maximum of the
n = 0 case, for (a) n = −2, (b) n = −1, (c) n = 0, (d) n = 1, (e)
n = 2. Parameters: incoming electron energy E0 = 4 eV, photon
energy ~ω = 1.5 eV, field strength 2.5711 × 107 V/m.
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