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Introduction

Mathematics is one of the oldest scientific disciplines and offers valid con-

tent for school curricula. There are obvious possibilities for the application

of its basics in everyday life, but a great majority of mathematical know-

ledge is taught in the hope that learning mathematics, besides improving

reasoning and cultivating the mind in general, can provide students with

systematic ways of approaching a variety of problems and with tools for an-

alyzing and modeling situations and events in the physical, biological and

social sciences. The power of mathematics as a tool for understanding the

world was proclaimed by Galileo in unambiguous terms when he wrote that

this great book of the universe, which stands continually open to our gaze,

cannot be understood unless one first learns to comprehend the language

and to read the alphabet in which it is composed: the language of mathemat-

ics (in Sobel, 1999).

In contrast to mathematics, scientific research into teaching and learning

mathematics is a relatively young discipline; it is about a century old. The

questions considered worth investigating and the research methods used to

answer these questions changed over time but one question remains central

in developmental psychology and education: Does learning mathematics

improve reasoning or is mathematics learning only open to those who have

attained an appropriate level of reasoning to begin with? Improving general
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cognitive abilities is especially important in a rapidly changing social envi-

ronment; thus an answer to this question is urgent.

Modern developmental psychology has seen the rapprochement of two

seemingly divergent theories that seek to explain cognitive development.

On the one hand, Piaget and his colleagues analyzed the forms of reasoning

that seem to characterize children’s thinking as they grow up, focusing on

the child’s problem solving strategies (i.e., their actions and inferences) and

justifications for these strategies (Inhelder & Piaget, 1958; Piaget &

Inhelder, 1974, 1975, 1976). On the other hand, Vygostky paved the way for

a deeper understanding of how cultural systems of signs (such as number

systems, graphing and algebra) allow students to record their own thoughts

externally, and then think and talk about these external signs, making them

into objects and tools for thinking (Vygostky, 1978).

A simple example can illustrate this point. When anyone asks us for the

time, we immediately look at our watches. In everyday life and in science,

we think about time in ways that are influenced by the mathematical rela-

tions embodied in clocks and watches. We say “a day has 24 hours” because

we measure time in hours; the ratio between 1 day and hours is 24:1; the ra-

tio hours to minutes is 60:1, and the ratio minutes to seconds is 60:1. We rep-

resent time through this cultural tool – the watch – and the mathematical re-

lations embodied in the watch, which allow us to describe the duration of a

day. This cultural tool enables us to make fine distinctions between different

times and also structures the way we think about time. Without it, we could

not make an appointment with a friend, for example at 11 o’clock, and then

say to the friend: “I’m sorry, I am 10 minutes late”. Our perception of time is

not that precise that we would be able to know exactly the time-point in the

day that corresponds to 11 o’clock and to tell the difference between 11 and

11 : 10. This is the Vygotskian side of the story.

The Piagetian story comes into play when we think about what children

need to understand in order to learn to read the watch and to compare differ-

ent points in time. Numbers on the face of the watch have two meanings:

they show the hours and the minutes. In order to read the minutes, children

need to be able to relate 1 and 5, 2 and 10, 3 and 15 etc. and in order to find

the interval, for example, between 1 : 35 and 2 : 15, they need to know that

the hour has 60 minutes, and add the minutes up to 2 o’clock to the minutes after

2 o’clock. All this thinking has to be applied to the tool in order for children

to learn to use it. We do not dwell on further examples here: it seems quite



clear that learning to use a watch requires an understanding of the relations

between minutes, hours and the numbers on the face of the watch. Research

shows that this can still be challenging for 8-year-olds (Magina & Hoyles,

1997).

In this chapter we focus alternatively on the forms of reasoning that are

necessary insights for learning mathematics and on the learning of conven-

tional mathematical signs that enable and structure reasoning. The chapter is

divided in three sections: whole numbers, rational numbers and solving

problems in the mathematics classroom. In each of these sections we at-

tempt to identify issues related to the psychological principles of learning

mathematics and its cultural tools. The chapter is written with a focus on

mathematics learning in primary school, and considers research with chil-

dren mostly in the age range 5 to 12. There is no attempt to cover research

about older students and no assumption that the issues raised here will suf-

fice to understand further mathematics learning.

Those reasoning processes which are at the center of mathematics educa-

tion are shaped by pre-school experiences and are influenced by outside

school activities as well. Reasoning abilities developed in mathematics are

applied to learning other school subjects while learning experiences in other

areas may advance the development of mathematical reasoning. Well de-

signed science education activities, for example, may stimulate those think-

ing abilities which are essential in mathematics too, first of all by providing

experiential basis and practicing in the field. However, there are issues in

cognitive development, where mathematics education plays a dominant

role, such as reasoning with quantities and measures, using mathematical

symbols etc. In this chapter we focus on these issues discussing in more de-

tails their critical position in further and broader mathematical development.

At the same time, we acknowledge the importance of the role that mathe-

matics education plays in promoting several further reasoning processes,

but in this chapter we deal with them only in brief.
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Mathematics Education and Cognitive Development

Whole Numbers

The aim of learning numbers in the initial years of primary school is to pro-

vide children with symbols for thinking and speaking about quantities. Later

on in school students may be asked to explore the concept of number in a

more abstract way and to analyze number sequences that are not representa-

tions of quantities, but throughout most of the primary school years numbers

will be used to represent quantities and relations between them.

Quantities and numbers are not the same. Thompson (1993) suggested

that “a person constitutes a quantity by conceiving of a quality of an object

in such a way that he or she understands the possibility of measuring it.

Quantities, when measured, have numerical value, but we need not measure

them or know their measures to reason about them. You can think of your

height, another person’s height, and the amount by which one of you is taller

than the other without having to know the actual values” (pp 165–166). You

can also know, without using numbers, that if you are taller than your friend

Rick, and Rick is taller than his friend Paula, you are taller than Paula. You

are certain of this even if you have never met Paula. So we can think about

relations between quantities without having a number to represent them. But

when we can represent them with numbers, we can know more: If you know

that you are 4 cm taller than Rick and that Rick is 2 cm taller than Paula, you

know that the difference between yours and Paula’s height is 6 cm.

In the initial years in primary school, children learn about numbers as

tools for thinking and speaking about quantities. The emphasis we place

here on numbers as representations rests on the significance of number sys-

tems as tools for thinking. We can’t record quantities or communicate with

others about them if we do not have a number system to represent quantities.

A system for representing quantities allows us to make distinctions that we

may not be able to make without the system. For example, we may not be

able to tell just from looking the difference between 15 and 17 buttons, but

we have no problem in doing so if we count them. Or we may not be able to

tell whether a cupboard we want to buy, which we see in a shop, fits into a

space in our house, but we will know if we measure the cupboard and the

space where we want it to fit. Systems of representation of quantities allow
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us to make distinctions we cannot make perceptually and make comparisons

between quantities across time and space. They enable and structure our

thinking: we think with the numbers we use in measuring.

Thus, there are two crucial insights that children need to attain in order to

understand whole numbers. First, they must realize that their knowledge of

numbers and of quantities should be connected. Second, they must under-

stand how the number system works.

Piaget, and subsequently many other researchers, explored several ideas

that children should have about the connections between quantities and their

numerical representation. Children should know, for example, that:

(1) if two quantities are equivalent, they should be represented by the

same number

(2) if two quantities are represented by the same number, they are equiva-

lent

(3) if some items are added to a set, the number that represents the set

should change and should be a larger number

(4) if some items are taken away from the set, the number should change

and be a smaller number

(5) if the same number of items is added to and then subtracted from the

set, the quantity and the number of items in the set do not change (i.e.

they should understand the inverse relation between addition and sub-

traction).

These insights into the relationship between number and quantity do not

seem to be available to children younger than about four or five years (see

Ginsburg, Klein, & Starkey, 1998, for a review of the first four points; see

Nunes, Bryant, Hallett, Bell, & Evans, 2009, for a review regarding the last

point). There is research that suggests that young children, even babies, can

see that, if you add one item to a set of one, you should have two items, but

there is no evidence to indicate that babies know that there is a connection be-

tween quantities and numerical symbols. All testing in the studies with babies

is perceptual, and thus they tell us nothing about knowing that a set repre-

sented by the number 1 should no longer be represented by 1 after you add

items to it. The difference between perceptual judgments and the use of sym-

bols is at the heart of understanding mathematical learning and reasoning.

These five insights regarding the connection between quantities and num-

bers are necessary (but not sufficient, as it will be argued later) for under-

standing whole numbers but they do not have the same level of difficulty.
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The first four are considerably simpler than the last one, which we refer to as

the inverse relation between addition and subtraction.

The difficulty of understanding the inverse relation between addition and

subtraction results from the need to coordinate two operations, addition and

subtraction, with each other and to understand how this coordination affects

number; it does not result from the amount of information that the children

need to consider in order to answer the question. Bryant (2007) demon-

strated this in a study where children were asked to consider the same

amount of information about sets; some problems involved the inverse rela-

tion between addition and subtraction whereas others did not. In the inverse

problems, the same number of items were added to and subtracted from a

single set. In the problems that did not involve inversion, the same number

of items was added to one set and subtracted from an equivalent set. Some

children were able to realize that the originally equivalent sets differed after

items were added to one and subtracted from the other but nevertheless did

not succeed in the inverse relation items, which involved operations on the

same set.

If understanding the connection between quantities and their numerical

representation really is important, there should be a relationship between

children’s insights into these connections and their learning of mathematics.

Children who already realize how quantity and number are related when

they start school should have an advantage in mathematics learning in com-

parison to those who did not attain these insights. Two studies carried out by

different research teams (Nunes, Bryant, Evans, Bell, Gardner, Gardner, &

Carraher, 2007; Stern, 2005) show that children’s understanding of the in-

verse relation between addition and subtraction predicts their mathematical

achievement at a later time, even after controlling for general cognitive fac-

tors such as intelligence and working memory.

Children’s understanding of the inverse relation develops over time.

Children are at first able to realize that there is an inverse relation between

addition and subtraction if the problems are presented to them with the sup-

port of quantities (either visually available or imagined); later, they also

seem to understand this when asked about numbers, with no reference to

quantities. If asked what is 34 plus 29 minus 29, they know they do not need

to compute the sums: they know that the answer is 34. They may be able to

also know the answer to 34 + 29 – 28 without calculating, but this is a more

difficult question.
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In summary, in order to understand whole numbers, children must realize

that there are specific connections between quantities and numbers. At

about age 4 to 5, children understand that, when two sets are equivalent, if

they count one set they know how many items are in the other without hav-

ing to count. At about age 6, they are able to understand also the inverse rela-

tion between addition and subtraction, and know that the number does not

change if the same number of items is added to and subtracted from a set.

This insight is a strong predictor of later mathematics achievement.

The insights we described in the previous paragraphs are about the

logical relations between quantities and numbers but this is not all one

should consider when analyzing whole numbers. One must ask also:

when numbers are represented using a base-ten system, what demands

does the nature of this representation place on the learner’s cognitive

skills? The base-ten system places two demands on the learner’s cogni-

tion: the learner must also have some insight into additive composition

and into multiplicative relations.

Additive relations require thinking about part-whole relations. In order to

understand what 25, for example, means, the learner should understand that

the two parts, 20 and 5, together are exactly as much as the whole, 25. In

more general terms, the learner must understand additive composition of

numbers, which means that any number can be formed by the sum of two

other numbers.

The multiplicative relations in the base ten system have to do with the

way the number labels and the place value system work. When we write

numbers, the place where the digit is indicates an implicit multiplication: if

the digit is the last one on the right, it is multiplied by 1, the second to the left

is multiplied by 10, and the third to the left is multiplied by 100 and so on.

Young children’s understanding of these additive and multiplicative rela-

tions in the number system may be subtle and implicit so we need specific

tasks to assess this knowledge. We have created tasks that seem to assess

additive composition and early multiplicative reasoning, which can be used to

predict children’s mathematics achievement. Additive composition is as-

sessed by our “Shop Task”. We ask children to pretend to buy items in a

shop; they are given coins of different values to buy the items. If they want

to buy, for example, a toy car that costs 9 cents, and they have one 5-cent

coin and six 1-cent coins, they need to combine the 5-cent coin with four

1-cent coins. Children who do not understand additive composition think
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that they do not have exact change to pay for the toy: they say that they have

five and six cents but their money does not allow them to “make” 9 cents.

About two thirds of children aged 6 years pass this question. This question is

highly predictive of mathematics achievement later on in primary school

(Nunes et al., 2007; Nunes, Bryant, Barros, & Sylva, 2011).

We assess young children’s understanding of multiplicative relations by

asking them to solve multiplication and division problems using objects. For

example, we show them a row of four houses and invite them to imagine that

inside each house live three rabbits. We then ask them how many rabbits

live in these houses. Children who have some early understanding of multi-

plicative relations in action simply point three times to each house and

“count the rabbits” as they point to the houses. Young children’s ability to

pass items such as this helps predict their mathematical achievement later on

(Nunes et al., 2007; Nunes, Bryant, Barros, & Sylva, 2011).

In summary, children must attain two sorts of insights in order to under-

stand whole numbers. They need to understand the connections between

quantities and numbers, and they need to understand the principles implicit

in the number system that we use to represent whole numbers, which is a

base-ten system. Research indicates that children who attain these insights

at the beginning of primary school show higher levels of mathematical

achievement later on, when the children are 8, 11 and 14 years (Nunes,

Bryant, Barros, & Sylva, 2011). So, early assessments of mathematics

should include items that measure such insights in order to help teachers

make decisions about what to teach to their children.

Rational Numbers

Rational numbers are needed to express parts of the whole. These quantities

appear in measurement and quotient situations. In a measurement situation,

for example, if you are measuring sugar with a cup and the quantity you

have is less than a cup, you might describe it as a third of a cup – or, with nu-

merical symbols, 1/3. In a quotient situation, for example, you might be

sharing one chocolate among three children; each child receives the result of

dividing 1 by 3, or 1/3. These two situations in which fractions are used have

in common the fact that, in order to speak of fractions, a division in equal

parts has to take place. Fractions, thus, are numbers that result from division,
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rather than from counting, as whole numbers do. (Here we always mean

positive parts of positive wholes.)

A division has three terms

(1) a dividend, which is the quantity being divided

(2) a divisor, which is the number of parts into which the quantity is di-

vided

(3) a quotient, which is the result of the division and the value repre-

sented by the fraction.

In order to understand fractions as representations of quantities, children

need to understand the connections between these numbers and the quanti-

ties that they represent. Fractions differ from whole numbers in many ways:

we consider three basic differences here that must be mastered by students if

they are to understand these numbers.

(1) A term within a fraction is given meaning by its relation to the other

term: thus by knowing only the numerator we can not tell the quantity

represented by the fraction.

(2) The same fraction might represent different quantities when the frac-

tion itself bears a relation to a whole. So ½ of 8 and ½ of 12 are not

equivalent although they are expressed by the same fraction.

(3) Different fractions might represent the same quantity: ½ and 2/4 of

the same pie represent the same quantity; this is treated in the mathe-

matics classroom as the study of equivalent fractions.

Many students do not seem to understand at first that the numbers in a

fraction represent relations between quantities (Vamvakoussi & Vosniadou,

2004); it takes some time for this understanding to develop, at least under

the present conditions of instruction. We explore below some of the ways in

which this aspect of understanding fractions has been investigated.

One relation that students must understand is that, the greater the dividend,

the greater the quotient, if the divisor remains the same. In part-whole situa-

tions, the dividend is the whole, which is not explicit in the fractional numeri-

cal representation; when we say 1/3 cup, the quantity in a cup is what is being

divided. It may be easy to understand that 1/3 of a small cup and 1/3 of a large

cup will not be the same quantity. But perhaps it is not as easy for students to

understand that the quantity represented by the symbol 1/3 may not always be

the same because the quantity being divided may not be the same.

We know of no studies that included a question about whether the same

fraction may represent different numbers (when expressing fractions of dif-
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ferent wholes) but Hart, Brown, Kerslake, Kücherman, and Ruddock (1985)

included in their large scale study of students’ understanding of fractions a

question that investigates students’ understanding of the connection between

fraction symbols and quantities. They told students that Mary spent ¼ of her

pocket money and John spent ½ of his pocket money, and then asked: is it

possible that Mary spent more money than John? If students understand that

the size of the whole matters, they should say that it is indeed possible that

Mary spent more money, although ½ is more than ¼ if the quantities come

from the same whole. However, 42% of the 11–12 year olds and 34% of the

12–13 year olds said that it is not possible; they justified their answer by indi-

cating that ½ is always more than ¼. So, it is not obvious to students in this age

range that the same fraction might not represent equivalent quantities.

Understanding the equivalence of fractions – that is, that different frac-

tions may represent the same quantity – is crucial for connecting quantities

with fractional symbols and also for adding and subtracting fractions. Re-

search suggests that fraction equivalence is not easy for many students (e.g.

Behr, Wachsmuth, Post, & Lesh, 1984; Kerslake, 1986) and that this is not

an all-or-nothing insight: students might attain this insight in one type of sit-

uation but not in another. We (Nunes, Bryant, Pretzlik, Bell, Evans, &

Wade, 2007) investigated students’ (age range 8 to 10 years) understanding

of the equivalence of fractional quantities in the context of part-whole and

quotient situations, both presented with the support of drawings. The prob-

lem in the part-whole situation was: Peter and Alan were given chocolate

bars of the same size, which were too large to be eaten in one day. Peter

broke his chocolate in 8 equal parts and ate 4; Alan broke his chocolate in 4

equal parts and ate 2. The students were asked whether the boys ate the same

amount of chocolate. The rate of correct responses to this problem was 31%.

The problem in the quotient situation was: a group of 4 girls is sharing

equally one cake and a group of 8 boys is sharing equally two cakes which

are identical to the girls’ cake. The students were asked whether, after the di-

vision, each girl would eat the same amount of cake as each boy. The rate of

correct responses in this situation was 73%. Thus, understanding the equiva-

lence between fractional quantities seems to happen in different steps: quo-

tient situations lead to significantly better performance.

The difference in students’ performance between these two situations sur-

prises many teachers but it is important to remember that problems that seem

very similar to a mathematician can be perceived as completely different by stu-
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dents (Vergnaud, 1979). Developmental psychologists test whether children

perceive different objects as instances of the same category by teaching them to

name one object and asking them to name the second one, without any instruc-

tion. If the children generalize the name learned for the first object to the sec-

ond, one can infer that they see both as instances of the same category.

This approach has been used in the analysis of fractions in two studies

(Nunes, Campos & Bryant, 2011; Mamede, 2007). In these studies, two

groups of students who had not yet received instruction about fractions in

school were introduced to the use of fractional representation in an experi-

ment. The students were randomly assigned to one condition of instruction:

they either learned to use fraction symbols to represent part-whole relations

or to represent quantities in quotient situations. Both groups of students pro-

gressed in the use of fractions symbols from pre- to post-test and made sig-

nificantly more progress than a control group, but this progress was specific

to the situation in which they received instruction. Students who learned to

use fractions for part-whole relations could not use fractions to represent

quotient situations, and vice-versa. So, children do not immediately see that

they can use fractions to represent part-whole and quotient situations: they

do not generalize the use of these symbols from one situation to the other.

This finding should caution researchers about drawing general conclusions

about students’ knowledge of fractions if they have analyzed the students’

performance in only one type of situation.

Finally, putting fractions in order of magnitude involves understanding the

relationship between the divisor and the quotient in a division, or between the

denominator and the quantity represented in a fraction: if the numerator is con-

stant, the larger the denominator, the smaller the quantity represented. Children

seem understand the inverse relation between the divisor and the quotient when

they are focusing on quantities rather than symbols: a large proportion of 6- and

7- year olds understands, for example, that the more people sharing a cake (or a

certain number of sweets), the less each one receives. However, this under-

standing does not translate immediately into knowledge of how fractions can be

put in order of magnitude. Hart et al. (1985) asked students to place in order of

magnitude the fractions ¼, ½, 1/100 and 1/3. This could be an easy item be-

cause the numerator is constant across fractions, but only about 2/3 of the stu-

dents in the age range 11-13 ordered these fractions correctly.

In conclusion, rational numbers are required for representing quantities

that arise in division situations, rather than as the result of counting. So, in
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order to understand the connection between the quantities represented by ra-

tional numbers and fraction symbols, students must understand the relations

between the three quantities in a division situation. The same fraction may

represent different quantities when they are fractions of different wholes.

Two different fractions represent the same quantity when the relationship

between the numerator and the denominator is the same, although the nu-

merator and denominator of the two fractions are different. For fractions of

the same numerator, the larger the denominator, the smaller the quantity

represented. Finally, the generalization of the use of fraction symbols be-

tween part-whole and quotient situations is not obvious to students, and in-

sights developed in quotient situations may not be transferred to part-whole

situations, and vice-versa.

Solving Arithmetic Problems

Much attention in research about solving arithmetic problems has focused

on learning to calculate with multi-digit numbers. This valuable research

(e.g. Brown & VanLehn, 1982; Resnick, 1982) taught us much about the

principled way in which children approach computations, even when they

make errors. This research will not be discussed here because the levels of

difficulty of calculation with the different types of multi-digit numbers is

well documented: for example, it is known that calculation with regrouping

(i.e. carrying or borrowing) is difficult; it is also known that subtracting,

multiplying and dividing when there is a zero in the numbers is problematic,

but zeros cause fewer problems in addition. So it is not difficult to choose a

few computation problems that can offer a good assessment of computation

skills. Unfortunately, the best way to teach students how to calculate re-

mains controversial, as well as the very need to teach students the traditional

written computation algorithms in the context of modern technological soci-

eties (see Nunes, 2008). In spite of this latter problem, this section focuses

not on how to do sums but knowing when to do which sums.

In the first 6 to 8 years of primary school, students are taught mathematics

that draws on two different types of relations between quantities: additive

relations, based on part-whole relations between quantities, and multiplica-

tive relations, based on correspondences (of different types) between quan-

tities. The differences between these two types of relations are best under-
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stood if we consider an example. Figure 1.1 presents two problems and iden-

tifies the quantities and relations in each one.

Both problems describe a quantity, the total number of books that Rob

and Anne have, and the relation between two quantities, Rob’s and Anne’s

books. The relation between the quantities in Problem 1 is described in

terms of a part-whole structure, as illustrated in the diagram. Part-whole re-

lations are additive. The relation between the quantities in Problem 2 is de-

scribed in terms of one-to-many correspondence, as illustrated in the dia-

gram; these are multiplicative relations.

(1) Together Rob and Anne have 15 books (quantity). Rob has 3 more books than
Anne (or Anne has 3 books fewer than Rob) (relation). How many books does each
one have? (quantity)

(2) Together Rob and Anne have 15 books (quantity). Rob has twice the number of
books that Anne has (or Anne has half the number of books that Rob has) (relation).
How many books does each one have? (quantity)

Figure 1.1 A schematic representation of relationships between quantities

in additive and multiplicative situations
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A major use of mathematics in problem solving involves the manipula-

tion of numbers in order to arrive at conclusions about the problems without

having to operate directly on the quantities: in other words, to model the

world. To quote Thompson (1993): “Quantitative reasoning is the analysis

of a situation into a quantitative structure – a network of quantities and quan-

titative relationships … . A prominent characteristic of reasoning quantita-

tively is that numbers and numeric relationships are of secondary impor-

tance, and do not enter into the primary analysis of a situation. What is im-

portant is relationships among quantities” (p. 165). If students analyze the

relationships between quantities in a way that represents the situation well,

the mathematical model they build of the situation will be adequate, and the

calculations that they implement will lead to correct predictions. If they ana-

lyze the relationships between quantities in a way that distorts the situation,

the model they build of the situation will be inadequate, and the calculations

that they implement will lead to incorrect predictions.

Some situations are immediately understood as additive or multiplica-

tive, and young children, aged 5 and 6, can solve problems about these situa-

tions even before they know how to calculate. They use different actions in

association with counting to solve these problems. Their actions reveal the

way in which they establish relations between the quantities.

A great deal of research (e.g. Brown, 1981; Carpenter, Hiebert, & Moser,

1981; Carpenter & Moser, 1982; De Corte & Verschaffel, 1987; Kintsch &

Greeno, 1985; Fayol, 1992; Ginsburg, 1977; Riley, Greeno, & Heller, 1983;

Vergnaud, 1982) shows that pre-school children use the appropriate actions

when solving problems that involve changes in quantities by addition or

subtraction: to find the answers to these problems, they put together and

count the items, or separate and count the relevant set. Very few pre-school

children seem to know addition and subtraction facts; yet, when they are

given the size of two parts, and asked to tell the size of the whole, their rate

of correct responses is above 70%, if the numbers are small and they have no

difficulty with counting. This is probably not surprising to most people.

However, most people seem surprised when they find out that such young

children also show rather high rates of success in multiplication and division

problems when they can use objects to help them answer the questions. Car-

penter, Ansell, Franke, Fennema, and Weisbeck (1993) gave multiplicative

reasoning problems to U.S. kindergarten children involving correspon-

dences of 2 : 1, 3 : 1 and 4 : 1 between the sets (e.g. 2 sweets inside each cup;
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how many sweets in 3 cups?). They observed 71% correct responses to these

problems. Becker (1993) observed 81% correct responses to multiplicative

reasoning problems among 5-year-olds in U.S. kindergartens, when the ra-

tios between quantities were 2 : 1 and 3 : 1.

So, when objects are available for manipulation, young children distin-

guish easily between the actions they need to carry out to solve simple addi-

tive and multiplicative problems. However, the level of difficulty of differ-

ent types of problems varies within both additive and multiplicative reason-

ing problems. Vergnaud (1982) argued that what makes many arithmetic

problems difficult is not the numerical calculation that students need to

carry out but the difficulty of understanding the relations involved in the

problem situations. Vergnaud refers to this aspect of problem solving as the

relational calculus, which he distinguishes from the numerical calculus – i.e.

from the computation itself. In the subsequent sections, we discuss first the

difficulties of relational thinking in the domain of additive reasoning and

then in the domain of multiplicative reasoning.

Additive Reasoning Problems

Different researchers (e.g. Carpenter, Hiebert, & Moser, 1981; Riley,

Greeno, & Heller, 1983; Vergnaud, 1982) proposed very similar classifi-

cations for the simplest forms of problems involving addition and subtrac-

tion. The basis of these classifications is the type of relational calculation

involved. Three groups of problems are identified using this approach. In

the first group problems, known as combine problems, were included

problems about quantities which were combined (or separated) but not

changed (e.g. Paul has 3 blue marbles and 6 purple marbles; how many

marbles does he have altogether?). The second group, known as change

problems, included problems that involved transformations from initial

states resulting in final states (e.g. Paul had 6 marbles; he lost 4 in a game;

how many does he have now?). The third group, known as comparison

problems, included problems in which relational statements are involved

(e.g. Mary has 6 marbles; Paul has 9 marbles; how many more marbles

does Paul have than Mary?). The question “how many more marbles does

Paul have than Mary” is a question about a relation rather than a quantity.

It can be reformulated as “how many fewer marbles does Mary have than
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Paul?” Relations have a converse (“how many more” has the converse

“how many fewer?”); quantities do not.

The research carried out about these different types of problems showed

that combine problems and change problems in which the initial state was

known were the easiest problems. Children aged about 6 perform at ceiling

level in these types of problems. However, the simplest comparison prob-

lems are still difficult for many 8 year olds whereas the most difficult ones,

which involve thinking of the converse statement about the comparison, are

still challenging for many students in the age 10–11 years. For example,

Verschaffel (1994), working with a small sample of students in Belgium re-

ported that if students were given the problem “Charles has 34 nuts. Charles

has 15 nuts less than Anthony. How many nuts does Anthony have?”, about

30% subtracted 15 from 34 and answered incorrectly. Lewis and Mayer

(1987) reported that this error was still presented among U.S. college stu-

dents, aged 18 years or older, but to a lesser degree (about 16%).

Combine problems always involve quantities and are relatively simple

even when the number representing the quantities in the problem is in-

creased. However, change problems involve transformations; combining

transformations is more difficult than combining quantities and analyzing

transformations is more difficult than separating quantities. For example,

consider the two problems below, the first about combining a quantity and a

transformation and the second about combining two transformations.

(1) Pierre had 6 marbles. He played one game and lost 4 marbles. How

many marbles did he have after the game?

(2) Paul played two games of marbles. He won 6 in the first game and lost 4 in

the second game. What happened, counting the two games together?

French children, who were between pre-school and their fourth year in

school, consistently performed better on the first than on the second type of

problem, even though the same arithmetic calculation (6 – 4) is required in

both problems. By the second year in school, when the children are about

7-years-old, they achieved 80% correct responses in the first problem, and

they only achieve a comparable level of success in the second problem two

years later, when they were about 9 years. So, combining transformations is

more difficult than combining a quantity and a transformation.

Three studies can be used to illustrate the difficulty of thinking about rela-

tions between quantities, two coming from a quantitative and one from a

qualitative tradition.
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This first example comes from the Chelsea Diagnostics Mathematics

Tests (Hart, Brown, Kerslake, Kuchermann, & Ruddock, 1985), which in-

cludes three problems about relations. All three problems have distances as

the problem content: distance is not a measure but a relation between two

points. The simplest problem is “John is cycling 8 miles home from school.

He stops at a sweet shop after 2 miles. How do you work out how much fur-

ther John has to go?” The question was a multiple choice one, and included

three possible answers involving addition and subtraction: 8 – 2, 2 – 8, and

2 + 6. The other four choices involved operations with either the multiplica-

tion or division signs. A total of 874 students participated in this study,

whose ages were in the ranges 10–11, 11–12 and 12–13 years. The rate of

correct responses did not show any increase between 10–11 and 12–13

years, and varied around 68% correct. The other two problems that were of a

similar type showed a similar leveling of performance at about 70%. (One

problem which had two correct answers showed a slightly higher percentage

of correct responses, reaching 78% for the 11–12 year olds.)

The second example involves the use of positive and negative numbers

and relations to solve a problem. Our own work (not published in this level

of detail yet) illustrates this. The data came from a longitudinal study with

two cohorts; both cohorts were tested when they were on average about

10 years 7 months (N = 7,981) and the first cohort was tested again in the

same items when they were on average 12 years 8 months (N = 2,755).

The problem was about pinball games, in which the player’s score depends

on the number of balls placed in different parts of the board (see Figure 1.2).

For each ball in the treasure zone, the player wins one point; for each ball in

the skull zone, the player loses one point; no points are awarded for balls lost

in the bottom. Obtaining the score for each game is a relatively simple ques-

tion when all the points are positive: about 90% of the students correctly give

the score for Game 3. The rate of correct responses goes down to 48% and

66%, respectively for the 10–11 and 12–13 age groups, when the player lost

points. However, combining information about the end result with the infor-

mation about these two games in order to indicate the player’s score in the first

game is a much more difficult task: only 29% of the students in the 10–11 year

old group and 46% of the students in the 12–13 year old group were success-

ful here. Because the numbers in the problems are small, it is not possible to

explain the problem difficulty by the difficulty of the numerical calculus: the

difficulty must be connected to the relational calculus. In the pinball game,
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positive and negative numbers have to be combined, and a relation between

the score in two games and the final score must be used in order to infer what

the score in the first game must have been.

Figure 1.2 An example of a problem based on the pinball game

A few studies about directed numbers (positive and negative numbers) have

been carried out in the past, which show that, when all the numbers have the

same sign (i.e. are all positive or negative), students treat them as natural num-

bers, and then assign to them the sign that they had. But combining information

from negative and positive numbers requires much more relational reasoning.

Marthe (1979), for example, found that only 67% of the students in the age

group 14–15 years were able to solve the problem “Mr. Dupont owes 684

francs to Mr. Henry. But Mr Henry also owes money to Mr. Dupont. Taking ev-

erything into account, it is Mr. Dupont who must give back 327 francs to

Mr. Henry. What amount did Mr. Henry owe to Mr. Dupont?”

Finally, the third example is provided by Thompson’s (1993) qualitative

analysis of the difficulties that students encounter in distinguishing between

relations and quantities in a study with 7- and 9-year olds. He analyzed stu-
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dents’ reasoning in complex comparison problems which involved at least

three quantities and three relations. His aim was to see how children inter-

preted complex relational problems and how their reasoning changed as

they tackled more problems of the same type. To exemplify his problems,

the first problem is presented here: „Tom, Fred, and Rhoda combined their

apples for a fruit stand. Fred and Rhoda together had 97 more apples than

Tom. Rhoda had 17 apples. Tom had 25 apples. How many apples did Fred

have?” (p. 167). This problem includes three quantities (Tom’s, Fred’s and

Rhoda’s apples) and three relations (how many more Fred and Rhoda have

than Tom; how many fewer Rhoda has than Tom; a combination of these

two relations). He asked six children who had achieved different scores in a

pre-test (three with higher and three with middle level scores) sampled from

two grade levels, second (aged about 7) and fifth (aged about 10) to discuss

six problems presented over four different days. The children were asked to

think about the problems, represent them and discuss them.

On the first day the children went directly to trying out calculations and

treated the relations as quantities: the statement “97 more apples than Tom”

was interpreted as “97 apples”. This led to the conclusion that Fred has 80 ap-

ples because Rhoda has 17. On the second day, working with problems about

marbles won or lost during the games, the researcher taught the children to use

representations for relations by writing, for example, “plus 12” to indicate that

someone had won 12 marbles and “minus 1” to indicate that someone had lost

1 marble. The children were able to work with these representations with the

researcher’s support, but when they combined two statements, for example

minus 8 and plus 14, they thought that the answer was 6 marbles (a quantity),

instead of plus six (a relation). So at first they represented relational state-

ments as statements about quantities, apparently because they did not know

how to represent relations. However, after having learned how to represent re-

lational statements, they continued to have difficulties in thinking only

relationally, and unwittingly converted the result of operations on relations

into statements about quantities. Yet, when asked whether it would always be

true that someone who had won 2 marbles in a game would have 2 marbles,

the children recognized that this would not necessarily be true. They did un-

derstand that relations and quantities are different but they interpreted the re-

sult of combining two relations as a quantity.

Unfortunately, Thompson’s study does not include quantitative results

from which we could estimate the level of difficulty of this type of problem
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at different age levels but it can be reasonably hypothesized that students at

age 13–15 have not yet mastered problems where many relations and quan-

tities must be combined in order to solve the problem.

A brief summary of how students progress in additive reasoning can be

gleamed from the literature.

(1) From a very early age, about 5 or 6 years, children can start to use

counting to solve additive reasoning problems. They can use the

schemas of joining and separating to solve problems that involve

combining quantities, separating quantities, or transforming quanti-

ties by addition and subtraction.

(2) It takes about two to three years for them to start using these actions in

a coordinated fashion, forming a more general part-whole schema,

which allows them to solve simple comparison problems.

(3) Combining transformations and relations to solve problems (such as

combining two distances to find the distance between two points)

continues to be difficult for many students. The CSMS study shows a

leveling off of rates of correct responses about age 13; older age

groups were not tested in these problems.

(4) The same additive relation can be expressed in different ways, such as

“more than” or “less than”. When students need to change the rela-

tional statement into its converse in order to implement a calculation,

they may fail to do so.

(5) Combining positive and negative numbers seems to remain diffi-

cult until the age of 14 (no results with 15 year olds were re-

viewed). The rate of correct responses in some of the problems

does not surpass 50%.

Multiplicative Reasoning Problems

Research on multiplicative reasoning problems has produced less agree-

ment in the classification of problem types. The different classifications

seem to be based on different criteria rather than on conceptual divergences

about the nature of multiplicative problems. We do not attempt to reconcile

these differences here but refer to them in footnotes as we describe the de-

velopment of multiplicative reasoning. We will adopt here Vergnaud’s ter-

minology and refer to others as required.
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Vergnaud (1983) distinguished between three types of multiplicative rea-

soning problems:

(1) isomorphism of measures problems, which involve two measures

connected by a fixed ratio (Brown, 1981, refers to these problems as

ratio or rate);

(2) multiple proportions, in which more than two measures are propor-

tionally related to each other;

(3) product of measures, in which two measures give rise to a third one,

the product of the two (Brown, 1981, refers to these as Cartesian

problems).1

Isomorphism of measures problems include the simple problems de-

scribed earlier on, which young children can solve by setting items in corre-

spondence. These are the most commonly used type of proportions prob-

lems in school; they involve a fixed ratio between two measures. Common

examples of such problems are number of people for whom a recipe is pre-

pared and amount of ingredients; number of muffins one makes and amount

of flower; quantity purchased and price paid. The level of difficulty of these

problems is influenced by the availability of materials that can be used to

represent the correspondences between the measures, the ratio between the

measures (2:1 and 3:1 are much easier than other ratios), the presence of the

unit value in the problem (3:1, for example, is easier than 3:2), and the val-

ues used in the problem (if the unknown is either a multiple or a divisor of

the known value in the same measure, it is possible to solve the problem us-

ing scalar reasoning or within-quantity calculations, the most commonly

used by students). In some countries (e.g. France; see Ricco, 1982;

Vergnaud, 1983), students are taught a general algorithm (e.g. finding the

unit value; the Rule of Three) that can be used to solve all proportions prob-

lems, but students often use other methods when proportions problems are

presented amongst other problems with different structures (Hart, 1981;

Ricco, 1982; Vergnaud, 1983). These student-designed methods have been

identified under different terminologies but are remarkably similar across
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countries. They involve parallel transformations within each measure (e.g.

dividing each measure by two), a move which preserves the ratio between

the measures, and a progressive approximation to the answer, without losing

sight of the correspondences between measures. Hart’s (1981) well known

example of the onion soup recipe for 8 people, which has to be converted

into a recipe for 6 people, illustrates this approach to solution well. Students

tend to calculate what ingredients would be required for 4 people (i.e. half of

the ingredients for 8 people), then what would be required for 2 people, and

then add the ingredients for 4 with those for 2 people – thus finding the solu-

tion for 6 people.

Systematic comparisons using carefully matched values across problems

(see, for example, Nunes, Schliemann, & Carraher, 1993) show that the stu-

dents approach proportions problems more often by thinking of the relations

within the same measure than of the relations between the two different

measures in the problem. For example, in the same onion soup recipe, the ra-

tio pints of water per person was 1:4. Students could calculate this ratio from

the recipe for 8 people and find how much water for 6 people, but this solu-

tion was not reported by Hart.2

In summary, in the assessment of younger children’s competence in

isomorphism of measures problems one can vary the level of problem diffi-

culty by varying the materials available for representing the problem; in the

assessment of older children, one can vary the level of problem difficulty by

using numbers that make either within-quantity or between-quantities cal-

culation easier.

Multiple proportions problems involve a situation in which more than

two measures have a fixed ratio. Vergnaud proposed as an example problem

the question of finding the amount of milk produced in a farm, which is re-

lated to the number of cows in the farm and the number of days. Multiple

proportion problems are more difficult than simple isomorphism of mea-

sures problems, as they involve handling more information and carrying out

more calculations. It is, however, not clear whether they pose new concep-

tual challenges for students.
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Proportional reasoning is one of the most crucial areas of mathematics

education, as it is the basis of understanding in several further domains of

mathematics. It is applied in other school subjects, first of all, in science.

Several everyday life contexts require handling of proportions as well.

Therefore, a number of large-scale assessment projects explored its devel-

opment (Kishta, 1979; Schröder at al., 2000; Misailidou, & Williams, 2003;

Boyera, Levinea, & Huttenlochera, 2008; Jitendra at al., 2009). In a

cross-sectional assessment where its development was examined in relation

to analogical and inductive reasoning, it was found that at grade five only

7% and at grade seven 20% of students was able to solve a simple propor-

tional task (Csapó, 1997).

Product of measures problems involve more a composition of two mea-

sures to form a third measure: for example, the number of T-shirts and

number of skirts a girl has can be composed to give the number of different

outfits that she can wear; the number of different colored cloths and the

number of emblems determines the number of different flags that you can

produce; the different types of bread and the number of different fillings in

a delicatessen can be combined to form different types of sandwiches.

Thus product of measures problems involve a qualitative multiplication –

i.e. the combination of different qualities in a multiple classification – as

well as a quantitative multiplication. Product of measures problems are

significantly more difficult than isomorphism of measures problems

(Brown, 1981; Vergnaud, 1983). They are a significant part of multiplica-

tive reasoning and thus should be evaluated in the assessment of students’

multiplicative reasoning.

The development of students’ understanding of product of measures

problems is not an all-or-nothing matter. These problems can be simplified

in presentation, by using suggestions of how the combinations work in a

step-wise presentation: with one skirt and 3 blouses, how many different

outfits can you make; if you buy a new skirt, how many new combinations

can you make? When product of measures problems are presented in a

step-wise manner, the rate of correct responses increases significantly

(Nunes & Bryant, 1996). Figure 1.3 shows an example of a product of mea-

sures problem in which the first two combinations are presented; students

might easily find the remaining combinations, and count the total possible

number. Students aged 11–12 years in the U.K. showed an average of 81%

correct responses to this problem; this was significantly better than the rate
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of 51% correct observed in problems in which only one item was used to

suggest how the combinations might work.

Figure 1.3 An example of product of measures problem in which the first

combinations are presented visually

However, students may not necessarily be able to formulate a general rule

for finding out the number of possible combinations after this step-wise in-

troduction. The step from thinking that for each new skirt, x new outfits to

the general rule that, therefore, the number of outfits is the number of skirts

times number of outfits, demands considerable effort.

In conclusion, the development of multiplicative reasoning involves two

types of correspondences: those exemplified in isomorphism of measures

problems, which are quantitative, and those exemplified in product of mea-

sures problems, in which an initial, qualitative step based on a multiple clas-

sification schema is required. Young children can succeed in isomorphism

of measures problems if they can use manipulatives to represent the mea-

sures; they solve the problems by counting (i.e. they do not calculate a multi-

plication) but their reasoning is clearly multiplicative. Product of measures

problems are more difficult.

As children progressively master the relational calculations in multiplica-
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tive reasoning, they solve a greater variety of problems. However, one chal-

lenge remains, even at the end of primary school. Students seem to have

greater difficulty in thinking about the between-quantities, functional rela-

tion (measured by the rate between variables) than about the within-quanti-

ties, scalar relation. Always solving problems using scalar solutions means

that students focus only on half of the relationships that are significant in the

situation. Teaching that helps students focus on functional relations also

helps students make conscious choices of models for problem solving. Stu-

dents are known to over-use as well as under-use proportional reasoning

(e.g. De Bock, Van Dooren, Janssens, & Verschaffel, 2002; De Bock,

Verschaffel, & Janssens, 1998; Dooren, Bock, Hessels, Janssens, &

Verschaffel, 2004) and also over-use linear relations when asked to repre-

sent graphically the relationship between two variables. It is possible that if

students became more aware of the functional relations, i.e. the relations be-

tween variables, they would be less prone to such errors.

Advancing Cognitive Development Through Mathematics

Education

In the preceding sections, we discussed how reasoning and knowledge of

numerical systems are inter-related and support each other in mathematics

education. Reasoning about quantities is always necessary for understand-

ing how numerical representations work. In this section, the focus is on how

good mathematics education can promote a better understanding of rela-

tions between quantities and a greater ability to use numbers and other math-

ematical tools to solve problems.

Research on Advancing Cognitive Development
in Mathematics Education

The examples of forms of reasoning about quantities described in the earlier

sections are not innate: they develop over time, and this development can be

promoted in the context of mathematics education. The influences between

mathematical reasoning and learning mathematics in the classroom are re-

ciprocal, in so far as promoting one leads to improvement in the other.
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Research by different teams of investigators (Nunes et al., 2007; Shayer

& Adhami, 2007) has shown that improving students’ thinking about mathe-

matics in the classroom has a beneficial effect on their later mathematics

learning. We present briefly here some results from the project by Shayer

and Adhami, which included a large number of classrooms and of pupils and

extensive professional development for the teachers. Shayer and Adhami’s

(2007) study included approximately 700 students and their teachers, ap-

proximately half of whom were in the control and the other half in experi-

mental classes. The researchers designed a program known as CAME (cog-

nitive acceleration through mathematics education) to be used by grade 5

and 6 teachers and their children (9 to 11 years old), which emphasized rea-

soning about numerical problems. The teachers participated in two full-day

professional development workshops, in which they discussed and re-de-

signed the tasks for their own use. The pupils were assessed in a Piagetian

task of spatial reasoning before and after their participation in the program.

For the control group, mathematics teaching went on in the busi-

ness-as-usual format during this period.

In the Piagetian Spatial Relations test (NFER, 1979), children are asked to

draw objects in situations chosen to test their notions of horizontality, verticality

and perspective. For example, they are asked to draw the water level in jam-jars

half-full of water, presented at the various orientations: upright, tilted at 30 de-

grees off vertical, and on its side. They are also asked to produce a drawing of

what they would see if they were standing in the middle of a road consisting of

an avenue of trees; the drawing should cover the near distance as well as afar.

Assessment of the children’s responses consists of seeing how many aspects of

the situation, how many relations, they can consider in their drawings. The tasks

allow for a classification of the productions as Piaget’s early concrete opera-

tions (level 2A), if the drawings represent only one relation, or as mature con-

crete (2B), if they handle two relations.

The tasks included in the program considered many of the issues raised

here: for example, with respect to rational numbers, the students were asked

to compare the amount of chocolate that recipients in two groups would

have; in one group, one chocolate was shared between 3 children and in the

other two chocolates were shared between 6 children. The equivalence of

fractions could be discussed in this context, which helped the students un-

derstand the equivalence in quantities in spite of the use of different frac-

tions to represent the quantities.
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Shayer and Adhami (2007) observed a significant difference between the

students in the control and the experimental classes, with the experimental

classes out-performing the control classes in the Piagetian task as well as in

the standardized mathematics assessments designed by the government, and

thus completely independent of the researchers.

In summary, mathematical tasks that are well chosen in terms of the de-

mands they place on students’ reasoning, and are presented to students in

ways that allow them to discuss the mathematical relations as well as the

connections between quantities and symbols, contribute to mathematical

learning and cognitive development.

Numeric Skills, Additive and Multiplicative Reasoning

The previous sections in this chapter identified different reasoning skills to

be developed, as playing a central role in early mathematics education and

determining later achievements. This section summarizes the different skills

related to this area and outlines their development.

Whole Numbers
In pre-school, children should have the opportunity to learn about the rela-

tions between quantities and numbers. The indicators presented here are not

exhaustive, but all children must be able to understand that:

(1) if a quantity increases or decreases, the number that represents it

changes

(2) if two quantities are equivalent, they are represented by the same

number;

(3) if the same number of items is added to and taken away from a set, the

number in the set doesn’t change;

(4) any number can be composed by the sum of two other numbers;

(5) when counting tokens with different values (money, for example),

some tokens count as more than one because their value has to be

taken into account.

Children who understand these principles make more progress in learning

mathematics throughout the first two years of school than those who do not.
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Rational Numbers
Fractions are symbols that represent quantities resulting from division, not

from counting. They represent the relation between the terms in a division.

Children can start to explore these insights in kindergarten and in the first

years in primary school by thinking about division situations. They should

be able to understand that:

(1) if two dividends are the same and two divisors are the same, the quo-

tient is the same (e.g. if there are two groups of children with the same

number of children sharing the same number of sweets (or sharing

cakes of the same size), the children in one group will receive as much

as the children in the other group;

(2) if the dividend increases, the shares increase;

(3) if the divisor increases, the shares decrease;

Further insights into the nature of division and fractions can be achieved

from about age 8 or 9:

(4) it is possible to share the same dividend in different ways and still

have equivalent amounts; the way in which the shares are cut does not

matter if the dividend is the same and the divisor is the same;

(5) if the dividends and the divisors are different, the relation between

them may still be the same (e.g. 1 chocolate shared by 2 children and

2 chocolates shared by 4 children result in equivalent shares);

(6) these ideas about quantities should be coordinated with the writing of

fraction symbols.

These insights about rational numbers enable students to use rational

number to represent quantities and can be used to help them learn how to op-

erate with numbers. However, in order to solve problems, students need to

learn in primary school to reason about two types of relations between quan-

tities, which lead to mathematizing situations differently: part-whole, which

define additive reasoning, and correspondence relations, which define

multiplicative reasoning.

Additive Reasoning
The development of additive reasoning involves a growing ability to distin-

guish quantities from relations and to combine positive and negative relations

even without knowledge of quantities. Although there is no single investigation

that covers the development of additive relational reasoning, a summary of how

students progress in additive reasoning can be abstracted from the literature.
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Level 1 Students can solve problems about quantities when these increase

or decrease by counting, adding and subtracting. They do not succeed in

comparison problems.

Level 2 Students succeed with comparison problems and also in using the

converse operation to solve problems. The same additive relation can be ex-

pressed in different ways, such as “more than” or “less than”. When students

need to change the relational statement into its converse in order to imple-

ment a calculation, they may fail to do so. At level 2, they are able to convert

one relation into its converse in order to solve problems.

Level 3 Students become able to compare positive and negative numbers

and to combine two relations to solve problems, but they often do so by hy-

pothesizing a quantity as the starting point for solution. Combining more

than two positive and negative relations in the absence of information about

quantities remains difficult until the age of 14 (no results with 15 year olds

were reviewed). The rate of correct responses in some of the problems does

not surpass 50%.

Level 4 Perfect performance in combining additive relations and distin-

guishing these from multiplicative relations.

Multiplicative Reasoning
Multiplicative reasoning starts with young children’s ability to place quanti-

ties in one-to-many correspondences to solve diverse problems, including

those in which two variables are connected proportionally and sharing situa-

tions. It involves the understanding of the notion of proportionality, which

includes situations in which there is a fixed ratio between two variables in

isomorphism of measures problems, and understanding the multiplicative

relation between two measures, which can be combined to form a third one,

in product of measures problems.

Level 1 Students can solve simple problems when two measures are ex-

plicitly described as being in correspondence and they can use materials to

set the variables in correspondence. However, in more complex situations,

in which they need to think of this correspondence themselves, they realize

that there is a relation between the two variables, so that a change in one

variable results in a change in the other one, but may not be able to think of

how to systematically establish correspondences between the variables.

Level 2 Students at this level recognize that the two values of the two vari-

ables vary together and in the same direction and there is a definite rule be-
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hind co-varying. In simple cases and familiar contexts, they recognize the

quantitative nature of the relationship but are unable to generalize a rule.

Level 3 At this level students recognize the linear nature of the relation-

ship, and they are able to deal with proportionality in familiar contexts.

Level 4 At this level, students are able to deal with the linear relationship

of the two variables in any content and context. They are also able to distin-

guish linear from non-linear relationships, although they may need to make

step by step comparisons when asked to think about novel problems.

The hierarchy outlined here corresponds to the natural order of cognitive

development. If teaching always focuses on the level next to the already

reached level – individually in cases of every student –, then they possess

the mental tools needed for comprehending it. In this way teaching may

have optimal developing effect.

Further Areas for Advancing Mathematical Thinking

Beyond the areas of mathematical reasoning discussed in the previous parts

of this chapter, there are several further ones to be developed in the early

mathematics education. We review some of them in this section, but we do

not deal with them in detail. Although the areas of mathematical reasoning

are related to each other, the areas of reasoning reviewed in this section are

not directly related to numerical reasoning or they are generalized beyond

the issues of numbers. Furthermore, fostering their development may also

be possible by exercises embedded in other school subjects; therefore, the

advancement of reasoning abilities reviewed here may not be narrowed to

mathematics education. For example, text comprehension assumes under-

standing and interpreting operations of propositional logic. Processing com-

plex scientific texts, especially comprehending sophisticated definitions re-

quires handling logical operations. Learning science activates a number of

cognitive skills which are developed in mathematics. In this way science ed-

ucation enriches the experiential basis of mathematical reasoning in several

aspects, such as seriations, classifications, relations, functions, combina-

torial operations, probability and statistics.

Most reasoning abilities listed here were extensively studied by Piaget

and his followers. According to their findings, the development of these

schemes begins early, well before schooling starts. In the first six years of
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schooling, in which we are interested, their development is mostly in

pre-operational and concrete operational phase, and the formal level can be

reached only in the later school years. Therefore, the main task of early

mathematics education is to provide students with a stimulating environ-

ment to gain experiences for inventing similarities and rules to create their

own operational schemes. These systematic experiences should be followed

by mastering the mathematical formalisms later. Science education, espe-

cially hands-on-science, may contribute to the development by enriching

the experiential bases in the early phase, and later at the higher level of ab-

straction by the application of mathematical tools.

Logical operations and the operations with sets are isomorphic from the

mathematical point of view, but the corresponding thinking skills are

rooted in different psychological developmental processes. However,

their similarities may be utilized in mathematics education. The develop-

ment of logical operations was examined in detail by Piaget and his

co-workers in their classical experiments (Inhelder & Piaget, 1958). Later

research has indicated that not only the structure of logical operations de-

termines how people judge the truth of propositions connected by logical

operations but the familiarity of context and the actual content of proposi-

tions as well (see Wason, 1968, and further research on the Wason task).

However, the aim of mathematical education is to help students to compre-

hend propositions and interpret their meaning determined by the structure

of the operations, therefore the conclusions of Piaget’s research remain

relevant for mathematics education. Furthermore, Piaget’s notion that de-

velopment takes place through several phases and takes time should also

be taken into account. As for the operations with sets, for which several

tools are available for manipulation, may serve as founding experiences

for logical operations. The schemes of concrete, manipulative operations

carried out by objects may be interiorized and promote the development of

operations of propositional logic. On the other hand, developing proposi-

tional logic is a broader educational task, in which pre-primary education

should play an essential role, as well as several further school subjects. In

the later phases teaching of other school subjects may contribute to foster-

ing the development by analyzing the structure of logical operations and

by highlighting the relationships between structure and meaning. There

are several broadly used instruments for assessing the development of log-

ical operation (see e.g. Vidákovich, 1998).
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Relations appear in several areas of mathematics education. Reasoning

with some relations has been discussed in the previous sections, and several

further operations involving relations were examined by Piaget, too (Piaget

& Inhelder, 1958). Among others these are seriations and class inclusions.

The construction of series plays a role in the development of proportional

reasoning discussed earlier and may contribute to several broader reasoning

abilities, such as analogical and inductive reasoning (see Csapó, 1997,

2003). Recognizing rules in series and correspondences in classifications

develop skills of rule induction and contribute to the concept of mathemati-

cal function. As the mathematical conception of function is a result of multi-

ple abstractions, a solid experiential base in essential for further learning.

Relations may be represented and visualized in several ways. Understand-

ing the correspondence between different representations and carrying out

transformations between representations may foster analogical reasoning.

Developing the skills related to multiple representations is also a task of

mathematics education.

From a mathematical point of view, combinatorics, probability and statis-

tics are closely related, but the corresponding psychological developmental

processes originate from different points. Spontaneous stimuli coming from

an average environment cannot connect these different ideas; only system-

atic mathematics teaching may lead to establishing connections among

them at a more mature level.

Combinatorial problems may be classified into two main groups. In enu-

meration tasks students are expected to create all possible constructs out of

given elements, permitted by conditions or situations. Some problems of

this type may be solved by combinatorial reasoning. In the other group are

the computation problems, when the number of possible constructs should

be calculated, which, in general case, can be solved only after systematic

mathematics education. We have already discussed some aspects of combi-

natorial reasoning concerning the multiplicative reasoning. Combinatorial

structures play a central role in Piaget’s theory of development of proposi-

tional logic, and he also examined the development of some combinatorial

operation (Piaget, és Inhelder, 1975). Several further research projects ex-

plored the structure and development of combinatorial thinking and the pos-

sibilities of fostering it both in mathematics and in other school subjects.

(Kishta, 1979; Csapó, 1988, 2001, 2003; Schröder, Bödeker, Edelstein, &

Teo, 2000; Nagy, 2004). An analysis identified 37 combinatorial structures,
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according to the number of variables, the number of values of variables, and

the number of constructs to be created that may be handled. On the basis of

these operational structures, test tasks can be devised. The empirical investi-

gation based on these tasks revealed that some children were able to solve

every task by age 14, but most of them were able to deal only with the most

basic operations (Csapó, 1988). The charge of early mathematical education

is the stimulation of the development of combinatorial reasoning by well

structured exercises, while enumeration tasks may be embedded in other

school subjects as well, which can also foster combinatorial reasoning

(Csapó, 1992). Nevertheless, preparing the formalization of reasoning

processes and teaching computational problems can be done only in mathe-

matics.

The development of the idea of chance and probability begins early

(Piaget & Inhelder, 1975), but without systematic stimulation most children

reach only a basic level. Understanding nondeterministic relationships and

correlations is especially difficult (Kuhn, Phelps, & Walters, 1985; Bán,

1998; Schröder, Bödeker, Edelstein, & Teo, 2000). Development of proba-

bilistic reasoning may be promoted in early mathematics by illustrating

chance, while other school subjects (e.g. biology) may present probabilistic

phenomena to enrich the experiential basis of development. Later, sys-

tematic exercises may prepare the introduction of formal interpretation of

probability as ratio of the number of occurrences of different events.

A further area, spatial reasoning is rooted in other developmental pro-

cesses, different from that of numeric reasoning, and is related to measures

and numbers in later developmental phases in the framework of systematic

geometry education. Piaget explored the development of spatial reasoning

mostly trough the representation of space in children’s drawings. According

to his results, early development may be characterized by a topologic view,

when first the connecting points of lines are correct on drawings, but shapes

are distorted. The shapes drawn by children get further differentiated during

the second stage (age 4–7). In the third stage children draw shapes and forms

which are correct in Euclidean terms (Piaget & Inhelder, 1956). Spatial rea-

soning may be fostered in the early mathematics education by systematic

exercises of studying two and three dimensional forms. Then, students may

be encouraged to infer that shapes have properties, and similarities and dif-

ferences between shapes may be characterized by these properties. Later,

properties may be precisely defined in the framework of geometry teaching.
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Spatial reasoning may be fostered in the framework of teaching drawing and

art education as well. A number of different instruments have been devised

for the assessment of representation of space in the framework of art educa-

tion (see e.g. Kárpáti & Gaul, 2011; Kárpáti & Pethõ, 2011).

Assessing Cognitive Development in Mathematics

One of the major points in the preceding discussion was the significance of

reasoning for understanding number system and for understanding how to

use mathematics to model the world. A second thread in the discussion is

that most insights that students have to develop in mathematics do not de-

velop in a single step. For this reason, assessments of cognitive develop-

ment in the context of mathematics should be designed in ways that place lit-

tle demands on computation in comparison to relational calculations. Com-

putation can, and should, be assessed on its own merits.

Content of Assessment

Reasoning skills that are predictive of mathematics achievement must be at

the core of assessments of cognitive development in mathematics. Different

predictive studies have shown that, in the early years, children’s perfor-

mance in tasks that assess their knowledge of correspondences, seriation,

additive composition, and the inverse relation between addition and subtrac-

tion predict their performance later, in standardized tests of mathematics

achievement (Nunes et al., 2007; van de Rijt, van Luit, & Pennings, 1999).

Early number skills, sometimes referred to as number sense, is also a predic-

tor of mathematics achievement (Fuchs, Compton, Fuchs, Paulsen, Bryant,

& Hamlet, 2005).

Measures of early number knowledge include knowing how to write and

read numbers, how to compare the magnitude of written and oral numbers,

and some computation bonds. As far as we know, only one study (Nunes et

al., 2011) has compared the relative importance of number skills and mathe-

matical reasoning in the prediction of mathematical achievement in a large

scale longitudinal analysis. This comparison also included the cognitive

functions of attention and memory in the analysis, and a measure of IQ. All
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predictors were assessed when the students were in the 8–9 year age range;

the measures of mathematical achievement were independent standardized

measures obtained by the school when they were 11–12 and 13–14 years.

All the predictors made significant and independent contributions to varia-

tion in mathematics achievement at ages 11–12 and 13–14. For both time

points, mathematical reasoning made a stronger contribution than attention

and memory and also than numerical skills. This analysis of the relative im-

portance of mathematical reasoning and number skills suggests that, if time

limits are significant, it is more important to assess mathematical reasoning

than numerical skills.

Forms of Assessing Thinking Abilities in Mathematics

The design of mathematical assessments is inevitably related to students’

general ability to understand instructions and other verbal skills. However,

it is possible to minimize the influence of reading skills by designing assess-

ments that use drawings to help students imagine the problem situations.

Drawings also allow students to use different approaches in establishing the

numerical value of their answer: they can often analyse the drawings (e.g.

divide something in two to help them imagine the value of half the quantity)

and even count in order to determine the answer. As long as their analysis of

the situation is correct, they have a better chance of quantifying the answer

correctly than if the problems were presented only in writing. Researchers in

the Freudenthal Institute pioneered this approach to assessment (see, for ex-

ample, van den Heuvel-Panhuizen, 1990), which gives valuable information

about students’ relational calculation skills.

As discussed earlier on, mathematical insights develop over time. Ideally,

one should include in assessments different levels of demands on the rea-

soning skills. These can be varied by using different forms of representation,

different situations, as well as different values. The preceding review sug-

gests how these variations can be attained within the assessment of the same

type of concept.
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Summary

In this chapter we have reviewed some major areas of the development of

mathematical reasoning. We have focused our attention on those psycholog-

ical questions which are the most crucial ones from the point of view of early

cognitive development. We highlighted those thinking abilities that may be

developed almost exclusively in the framework of mathematics education.

Among these areas are the reasoning about measures and numbers and the

development of the relations among concepts and skills.

We have emphasized that developing mathematical thinking differs from

mastering mathematical knowledge. The beginning phase of schooling

should focus on fostering the development of mathematical thinking, as

without proper reasoning skills mathematics cannot be comprehended.

We have discussed four areas in more detail: reasoning about whole num-

bers, rational numbers, additive and multiplicative reasoning. These are es-

pecially important as they form the foundations for later mathematics learn-

ing. Results of several research projects indicated the predictive power of

these thinking abilities; the early levels assessed in these areas predict the

achievements measured later.

We have also indicated that there are several further important compo-

nents of mathematical reasoning. They can be developed and assessed in

similar ways to those that were described in more detail.

We have emphasized at several points that the development of mathemat-

ical thinking is a slow and long process taking several years. However, sev-

eral research and development projects have shown that systematic stimu-

lating exercises can accelerate development. These exercises can result in

improvement of thinking only if they are carefully matched to the actual de-

velopmental level of students. Therefore, in mathematics education, the se-

quence of developmental stimuli is especially important. A complex think-

ing process can develop successfully only if the preceding phase has already

been completed and the component skills developed.

Consequently, for the development of mathematical thinking, it is in-

evitable that teachers know well the actual developmental level of their

students. This allows them to adjust teaching individually to the need of

every student. In order to meet this need, the instruments of diagnostics

assessment should cover the developmental process of mathematical

thinking.

52

Terezinha Nunes and Benõ Csapó



References

Bán, S. (1998). Gondolkodás a bizonytalanról: valószínûségi és korrelatív gondolkodás
[Thinking about the uncertain: probabilistic and correlational reasoning]. In B. Csapó
(Ed.). Az iskolai tudás (pp. 221–250). Budapest: Osiris Kiadó.

Behr, M. J., Wachsmuth, I., Post, T. R., & Lesh, R. (1984). Order and equivalence of rational
numbers: A clinical teaching experiment. Journal for Research in Mathematics
Education, 15(5). 323–341.

Boyera, T. W., Levinea, S. C., & Huttenlochera, J. (2008). Development of proportional
reasoning: Where young children go wrong. Developmental Psychology, 44(5).
1478–1490.

Brown, J. S., & VanLehn, K. (1982). Towards a generative theory of ‘bugs’. In T. P.
Carpenter, J. M. Moser & T. A. Romberg (Eds.), Addition and Subtraction: A Cognitive
Perspective (pp. 117–135). Hillsdale, NJ: Erlbaum.

Brown, M. (1981). Number operations. In K. Hart (Ed.), Children’s Understanding of
Mathematics: 11–16 (pp. 23–47). Windsor, UK: NFER-Nelson.

Bryant, P. (2007). Children’s understanding of addition and subtraction. Paper presented at
the Conference Students’ misconceptions and errors. Greek Education Research Center
of the Ministry of Education, Athens, 1–2 November.

Csapó, B. (1988). A kombinatív képesség struktúrája és fejlõdése. [Structure and
development of combinative ability] Budapest: Akadémiai Kiadó.

Csapó, B. (1992). Improving operational abilities in children. In A. Demetriou,. M. Shayer,
& A. Efklides (Eds.), Neo-Piagetian theories of cognitive development. Implications
and applications for education (pp. 144–159). London: Routledge and Kegan.

Csapó, B. (1997). Development of inductive reasoning: Cross-sectional measurements in an
educational context. International Journal of Behavioral Development, 20. 609–626.

Csapó, B. (2001). A kombinatív képesség fejlõdésének elemzése országos reprezentatív fel-
mérés alapján. [An analysis of the development of combinative ability: a large-scale
survey] Magyar Pedagógia. 101. 511–530.

Csapó B. (2003). A képességek fejlõdése és iskolai fejlesztése. [The development of abilities
and their improvement in a school context] Budapest: Akadémiai Kiadó.

De Bock, D., Van Dooren, W., Janssens, D., & Verschaffel, L. (2002). Improper use of linear
reasoning: an in-depth study of the nature and the irresistibility of secondary school
students’ errors. Educational Studies in Mathematics, 50. 311–334.

De Bock, D., Verschaffel, L., & Janssens, D. (1998). The predominance of the linear model
in secondary school students’ solutions of word problems involving length and area of
similar plane figures. Educational Studies in Mathematics, 35. 65–83.

Dooren, W. V., Bock, D. D., Hessels, A., Janssens, D., & Verschaffel, L. (2004). Remedying
secondary school students’ illusion of linearity: a teaching experiment aiming at
conceptual change. Learning and Instruction, 14. 485–501.

Fuchs, L. S., Compton, D. L., Fuchs, D., Paulsen, K., Bryant, J. D., & Hamlet, C. L. (2005).
The prevention, identification, and cognitive determinants of math difficulty. Journal of
Educational Psychology, 97. 493–513.

Hart, K. (1981). Ratio and proportion. In K. Hart (Ed.), Children’s Understanding of
Mathematics: 11–16 (pp. 88–101). London: John Murray.

53

Developing and Assessing Mathematical Reasoning



Hart, K., Brown, M., Kerslake, D., Kuchermann, D., & Ruddock, G. (1985). Chelsea
Diagnostic Mathematics Tests. Fractions 1. Windsor (UK): NFER-Nelson.

Inhelder, B., & Piaget, J. (1958). The growth of logical thinking. London: Routledge and
Kegan Paul.

Jitendra, A. K., Star, J. R., Starosta, K., Leh, J. M., Sood, S., Caskie, G., Hughes, C. L., &
Mack, T. R. (2009). Improving seventh grade students’ learning of ratio and proportion:
The role of schema-based instruction. Contemporary Educational Psychology, 34(3).
250–264.

Kárpáti, A., & Gaul, E. (2011). A vizuális képességrendszer: tartalom, fejlõdés, értékelés
[The system of visual abilities: content, development, assessment]. In B. Csapó, & A.
Zsolnai (Eds.), Kognitív és affektív fejlõdési folyamatok diagnosztikus értékelésének
lehetõségei az iskola kezdõ szakaszában [Possibilities of assessing cognitive and
affective developmental processes] (pp. 41–82). Budapest: Nemzeti Tankönyvkiadó.

Kárpáti, A., & Pethõ, V. (2011). A vizuális és a zenei nevelés eredményeinek vizsgálata.
[Assessments of the results of visual and music education] In B. Csapó (Ed.), Mérlegen
a magyar iskola. [The Hungarian school measured] (in press). Budapest: Nemzeti Tan-
könyvkiadó.

Kerslake, D. (1986). Fractions: Children’s Strategies and Errors: A Report of the Strategies
and Errors in Secondary Mathematics Project. Windsor: NFER-Nelson.

Kishta, M. A. (1979). Proportional and combinatorial reasoning in two cultures. Journal of
Research in Science Teaching. 16(5). 439–443.

Kuhn, D., Phelps, E., & Walters, J, (1985). Correlational reasoning in an everyday context.
Journal of Applied Developmental Psychology, 6(1). 85–97.

Magina, S., & Hoyles, C. (1997). Children’s understanding of turn and angle. In T. Nunes, &
P. Bryant (Eds.), Learning and Teaching Mathematics. An International Perspective
(pp. 88–114). Hove (UK): Psychology Press.

Misailidou, C., & Williams, J. (2003). Diagnostic assessment of children’s proportional
reasoning. Journal of Mathematical Behavior, 22. 335–368.

Mamede, E. P. B. d. C. (2007). The effects of situations on children’s understanding of
fractions. Unpublished PhD Thesis, Oxford Brookes University, Oxford.

Nagy, J. (2004). A elemi kombinatív képesség kialakulásának kritériumorientált diagnoszti-
kus feltárása [Criterion referenced diagnostic assessment of basic combinatorial skills].
Iskolakultúra, 14(8). 3–20.

Nesher, P. (1988). Multiplicative school word problems: theoretical approaches and
empirical findings. In J. Hiebert, & M. Behr (Eds.), Number concepts and operations in
the middle grades (pp. 19–40). Hillsdale, NJ: Erlbaum.

Nunes, T. (2008). Mathematics instruction in primary school: The first three years. In J.
Balayeva (Ed.), The Encyclopedia of Language and Literacy Development. London,
Ontario, Ca: Canadian Language and Literacy Research Network.
http://literacyencyclopedia.ca/index.php?fa=items.show&topicId=250

Nunes, T., & Bryant, P. (1996). Children doing mathematics. Oxford: Blackwell Publishers.
Nunes, T., & Bryant, P. (2010). Insights from everyday knowledge for mathematics

education. In D. D. Preiss, & R. J. Sternberg (Eds.), Innovations in Educational
Psychology. (pp. 51–78.) New York: Springer.

54

Terezinha Nunes and Benõ Csapó



Nunes, T., Bryant, P., Barros, R., & Sylva, K. (2011). The relative importance of two
different mathematical abilities to mathematical achievement. British Journal of
Educational Psychology, Article first published online: 27 APR 2011, DOI:
10.1111/j.2044-8279.2011.02033.x.

Nunes, T., Bryant, P., Evans, D., Bell, D., Gardner, S., Gardner, A., & Carraher, J. N. (2007).
The Contribution of Logical Reasoning to the Learning of Mathematics in Primary
School. British Journal of Developmental Psychology, 25. 147–166.

Nunes, T., Bryant, P., Hallett, D., Bell, D., & Evans, D. (2009). Teaching children about the
inverse relation between addition and subtraction. Mathematics Thinking and Learning,
11. 61–78.

Nunes, T., Bryant, P., Pretzlik, U., Bell, D., Evans, D., & Wade, J. (2007). La compréhension
des fractions chez les enfants. In M. Merri (Ed.), Activité humaine et conceptualisation
(pp. 255–262). Toulouse: Presses Universitaires du Mirail.

Nunes, T., Campos, T. M. M., & Bryant, P. (2011). Introdução à Educação Matemática Os
números racionais. São Paulo: Cortez (no prelo).

Nunes, T., Schliemann, A. D., & Carraher, D. W. (1993). Street mathematics and school
mathematics. New York: Cambridge University Press.

Piaget, J., & Inhelder, B. (1974). The child’s construction of quantities. London: Routledge
and Kegan Paul.

Piaget, J., & Inhelder, B. (1975). The origin of the idea of chance in children. London:
Routledge and Kegan Paul.

Piaget, J., & Inhelder, B. (1976). The child’s conception of space. London: Routledge and
Kegan Paul.

Resnick, L. B. (1982). Syntax and semantics in learning to subtract. In T. P. Carpenter, J. M.
Moser, & T. A. Romberg (Eds.), Addition and subtraction: A cognitive perspective (pp.
136–155). Hillsdale, NJ: Erlbaum.

Ricco, G. (1982). Les première acquisitions de la notion de fonction linèaire chez l’enfant de

7 à 11 ans. Educational Studies in Mathematics, 13. 289–327.
Schröder, E., Bödeker, K., Edelstein, W., & Teo, T. (2000). Proportional, combinatorial,

and correlational reasoning. A manual including measurement procedures and
descriptive analyses. Study „Individual Development and Social Structure”. Data
Handbooks Part 4. Berlin: Max Planck Institute for Human Development.

Schwartz, J. (1988). Intensive quantity and referent transforming arithmetic operations. In J.
Hiebert, & M. Behr (Eds.), Number concepts and operations in the middle grades (pp.
41–52). Hillsdale, NJ: Erlbaum.

Shayer, M., & Adhami, M. (2007). Fostering cognitive development through the context of
mathematics: Results of the CAME project. Educational Studies in Mathematics, 64.
265–291.

Stern, E. (2005). Transitions in mathematics: From intuitive quantification to symbol-based
reasoning. Paper presented at the International Society for the Study of Behavioral
Development (ISSBD), Melbourne, Australia.

Vamvakoussi, X., & Vosniadou, S. (2004). Understanding the structure of the set of rational
numbers: a conceptual change approach. Learning and Instruction, 14. 453–467.

55

Developing and Assessing Mathematical Reasoning



van den Heuvel-Panhuizen, M. (1990). Realistic arithmetic/mathematics instruction and
tests. In K. Gravemeijer, M. van den Heuvel, & L. Streefland (Eds.), Contexts free
productions tests and geometry in realistic mathematics education (pp. 53–78). Utrecht,
Netherlands: Research group for Mathematical Education and Educational Computer
Centre, State University of Utrect.

van de Rijt, B. A. M., van Luit, J. E. H., & Pennings, A. H. (1999). The construction of the
Utrecht Early Mathematical Competence Scales. Educational and Psychological
Measurement, 59. 289–309.

Vergnaud, G. (1979). The acquisition of arithmetical concepts. Educational Studies in
Mathematics, 10. 263–274.

Verschaffel, L. (1994). Using retelling data to study elementary school children’s
representations and solutions of compare problems. Journal for Research in
Mathematics Education, 25(2). 141–165.

Vidákovich, T. (1998). Tudományos és hétköznapi logika: a tanulók deduktív gondolkodása
[Scientific and everyday logic: Deductive reasoning of students]. In B. Csapó (Ed.). Az
iskolai tudás. (pp. 191–220) Budapest: Osiris Kiadó.

Vygotsky, L. S. (1978). Mind in Society. Cambridge, Mass: Harvard University Press.
Wason, P. C. (1968). Reasoning about a rule. Quarterly Journal of Experimental

Psychology, 20. 271–281.

56

Terezinha Nunes and Benõ Csapó


