Educational Research and Innovation

THE NATURE OF PROBLEM SOLVING
USING RESEARCH TO INSPIRE 21ST CENTURY LEARNING

Edited by Benő Csapó and Joachim Funke
This work is published on the responsibility of the Secretary-General of the OECD. The opinions expressed and arguments employed herein do not necessarily reflect the official views of the OECD member countries.

This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.

Please cite this publication as:

ISSN: 2076-9660 (print)
ISSN: 2076-9679 (online)

The statistical data for Israel are supplied by and under the responsibility of the relevant Israeli authorities. The use of such data by the OECD is without prejudice to the status of the Golan Heights, East Jerusalem and Israeli settlements in the West Bank under the terms of international law.

Photo credits:
Fotolia/alphaspirit

Corrigenda to OECD publications may be found online at: www.oecd.org/publishing/corrigenda.

© OECD 2017

This work is available under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 IGO license (CC BY-NC-ND 3.0 IGO) http://creativecommons.org/licenses/by-nc-nd/3.0/igo/deed.en, you are free to copy and redistribute the material, provided the use is for non-commercial purposes, under the following conditions: Attribution - Please cite the work as follows: OECD (2017), The Nature of Problem Solving, Using Research to Inspire 21st Century Learning, OECD Publishing, Paris. DOI: http://dx.doi.org/10.1787/9789264273955-en. License: Creative Commons Attribution CC BY-NC-ND 3.0 IGO.

Third-party content - The OECD does not necessarily own each component of the content contained within the work. Therefore, the OECD does not warrant that the use of any third-party owned individual component or part contained in the work will not infringe on the rights of those third parties. The risk of claims resulting from such infringement rests solely with you. If you wish to re-use a component of the work, it is your responsibility to determine whether permission is needed for that re-use and to obtain permission from the copyright owner. Examples of components can include, but are not limited to, tables, figures, or images. Requests for permission to use or translate portion(s) of this work for commercial purpose must be obtained through the Copyright Clearance Centre, Inc. (CCC), www.copyright.com. Requests for permission to translate or distribute modified version of this work must be submitted to ceri.contact@oecd.org.
Foreword

The demands on learners and thus education systems are evolving fast. In the past, education was about teaching people something. Now, it’s about making sure that students develop a reliable compass and the navigation skills to find their own way through an increasingly uncertain, volatile and ambiguous world. These days, we no longer know exactly how things will unfold, often we are surprised and need to learn from the extraordinary, and sometimes we make mistakes along the way. And it will often be the mistakes and failures, when properly understood, that create the context for learning and growth. A generation ago, teachers could expect that what they taught would last a lifetime for their students. Today, teachers need to prepare students for more rapid economic and social change than ever before, for jobs that have not yet been created, to use technologies that have not yet been invented, and to solve social problems that we don’t yet know will arise.

The dilemma for educators is that the kind of skills that are easiest to teach and easiest to test, are also the skills that are easiest to digitise, automate and outsource. There is no question that state-of-the-art disciplinary knowledge will always remain necessary. Innovative or creative people generally have specialised skills in a field of knowledge or a practice. And as much as “learning to learn” skills are important, we always learn by learning something. However, success in life and work is no longer mainly about reproducing content knowledge, but about extrapolating from what we know and applying that knowledge in novel situations. Put simply, the world no longer rewards people just for what they know – Google knows everything – but for what they can do with what they know. Problem solving is at the heart of this, the capacity of an individual to engage in cognitive processing to understand and resolve problem situations where a method of solution is not immediately obvious.

Conventionally our approach to problems in schooling is to break them down into manageable pieces, and then to teach students the techniques to solve them. But today individuals create value by synthesising disparate parts. This is about curiosity, open-mindedness, making connections between ideas that previously seemed unrelated, which requires being familiar with and receptive to knowledge in other fields than our own. If we spend our whole life in a silo of a single discipline, we will not gain the imaginative skills to connect the dots, which is where the next invention will come from.

Perhaps most importantly, in today’s schools, students typically learn individually and at the end of the school year, we certify their individual achievements. But the more interdependent the world becomes, the more we rely on great collaborators and orchestrators who are able to join others to collaboratively solve problems in life, work and citizenship. Innovation, too, is now rarely the product of individuals working in isolation but an outcome of how we mobilise, share and link knowledge. So schools now need to prepare students for a world in which many people need to collaborate with people of diverse cultural origins, and appreciate different ideas, perspectives and values; a world in which people need to decide how to trust and collaborate across such differences; and a world in which their lives will be affected by issues that transcend national boundaries. Expressed differently, schools need to drive a shift from a world where knowledge is stacked up somewhere depreciating
rapidly in value towards a world in which the enriching power of collaborative problem-solving activities is increasing.

These shifts in the demand for knowledge and skills are well understood and documented, and to some extent they are even intuitive. Not least, many school curricula highlight the importance of individual and social problem-solving skills. And yet, surprisingly little is known about the extent to which education systems deliver on these skills. This is not just because school subjects continue to be shaped by traditional disciplinary contexts. It is also because educators have few reliable metrics to observe the problem-solving skills of their students - and what doesn’t get assessed doesn’t get done.

The OECD Programme for International Student Assessment (PISA) sought to address this. Its 2012 assessment contained the first international metric of individual problem-solving skills and the 2015 assessment took this further, assessing collaborative problem-solving skills. The results turned out to be extremely interesting, in part because they showed that strong problem-solving skills are not an automatic by product of strong disciplinary knowledge and skills. For example, Korea and Japan, which both did very well on the PISA mathematics test, came out even stronger on the PISA assessment of problem-solving skills. In contrast, top mathematics performer Shanghai did relatively less well in problem solving. Such results suggest that it is worth educators devoting more attention to how problem-solving skills are developed both in disciplinary and cross-disciplinary contexts.

But while problem solving is a fairly intuitive and all-pervasive concept, what has been missing so far is a strong conceptual and methodological basis for the definition, operationalisation and measurement of such skills. This book fills that gap. It explores the structure of the problem-solving domain, examines the conceptual underpinning of the PISA assessment of problem solving and studies empirical results. Equally important, it lays out methodological avenues for a deeper analysis of the assessment results, including the study of specific problem-solving strategies through log-file data.

In doing so, the book provides experts and practitioners with the tools to better understand the nature of problem-solving skills but also with a foundation to translate advanced analyses into new pedagogies to foster better problem-solving skills.

Andreas Schleicher

Director for Education and Skills
Special Advisor to the Secretary-General
Acknowledgements

Thanks to all the people who contributed to this book and helped to finalise a process that took much longer than expected! Special thanks to Julia Karl (Heidelberg) who helped us preparing a standardised and printable version of all manuscripts. And thanks to Marion Lammarsch (Heidelberg) for help with converting text from LaTeX to Word. Thanks to the OECD staff, in particular Francesco Avvisati, Sophie Limoges and Rachel Linden, for their valuable support during the production process, and to Sally Hinchcliffe for the thoughtful language editing of the manuscript.

This book stems mainly from the collaboration of the members of the OECD Problem Solving Expert Group (PEG) of PISA 2012. This PEG group started its works in 2009 and finished their official work in 2014. The group consisted of the following eight members:

- Joachim Funke (Chair), Heidelberg University, Germany
- Benő Csapó, University of Szeged, Hungary (ex officio PGB representative)
- John Dossey, Illinois State University, United States
- Art Graesser, University of Memphis, United States
- Detlev Leutner, Duisburg-Essen University, Germany
- Richard Mayer, University of California, United States
- Tan Ming Ming, Ministry of Education, Singapore
- Romain Martin, University of Luxembourg, Luxembourg

Members of the PEG group have already been involved with problem solving for a long time, and their meetings under the umbrella of the PISA work inspired a number of other meetings and co-operative studies involving people from other organisations and institutions. Influenced by the creative atmosphere of the PEG meetings, some of the members met and presented their work together at other professional meetings as well. Amongst these were the annual meetings at Szeged University in the framework of Szeged Workshop of Educational Evaluation (SWEE; since 2009 a yearly repeated event), the TAO days in Luxembourg (March, 2011), the AERA meeting in New Orleans (April, 2011), two symposia at the EARLI biennial meeting in Exeter (September, 2011), the European Conference of Psychology in Istanbul (July, 2011), two symposia at the International Conference on Psychology in Cape Town (July, 2012), and more recently the “Celebrating Problem Solving” conference at the University of Szeged (November 2015). Many related journal articles have been published in the meantime – too many to be listed here.

These productive meetings brought together researchers interested in problem solving, assessment of cognitive skills, and technology based assessment, and so initiated empirical works in the overlapping areas of these special fields. For example, as already mentioned, one of
the major shifts from PISA 2003 problem solving to PISA 2012 problem solving was the shift from paper-and-pencil based to computer-based assessment that required strong interactions between item developers and the group taking care of the technical implementation. Within a rather short time scale, software tools had to be developed and implemented that allow for the necessities in international large-scale assessment studies (e.g. preparing for more than 100 different languages, different character sets including left-to-right and right-to-left, and different levels of computer equipment).

The PEG group was supported by a wonderful team from ACER (Australian Council for Educational Research, Melbourne, Australia): the “trio” consisting of Barry McCrae, Ray Philpot, and Dara Ramalingam. They prepared meetings and materials in a fantastic way and helped us through a jungle of dates, deadlines, and data. Ray Adams worked as Interim Chair in the beginning of the project. All of this contributed to the success of PISA 2012.

Maybe unique in the history of PISA expert groups, this community of researchers, while developing the assessment framework and creating the instruments discovered the potentials of an emerging field: the possibilities offered by computerised, dynamic, interactive assessment of problem solving. Using multimedia and simulation to present the test tasks, capturing students’ responses in novel ways, logging student’s activities and using log-file analyses for exploring cognitive processes, perseverance and motivation have opened new and exciting directions for research. They have been continuing their collaboration far beyond their task in the 2012 assessment cycle.

The individual chapters in this book have been reviewed by members of the group and by reviewers from the OECD. This process hopefully helped to improve the quality of the chapters. At the same time, these activities delayed the publication process a bit.

Lastly we would like to extend our thanks to Andreas Schleicher for his support throughout the publication process.
Table of contents

PART I Problem solving: Overview of the domain ... 17

CHAPTER 1 The development and assessment of problem solving in 21st-century schools ... 19
 Introduction ... 20
 Educational methods aimed at improving the quality of knowledge 22
 Developing the scope of international assessment programmes 25
 Conclusions for further research and development ... 27
 References .. 28

CHAPTER 2 Analytical problem solving: Potentials and manifestations 33
 Introduction ... 34
 Analytical problem solving as a process ... 36
 Analytical problem solving as a competence .. 36
 Training in analytical problem-solving competence ... 40
 Summary and discussion .. 42
 References .. 43

CHAPTER 3 Problem solving: Understanding complexity as uncertainty 47
 Introduction ... 48
 Complex problem solving: Everyday examples ... 49
 Complex problem solving: Empirical examples ... 50
 Complexity by any other name: Uncertainty ... 51
 Cues to controllability .. 53
 Practical solutions to practical problems .. 55
 References .. 56

CHAPTER 4 Problem solving from a mathematical standpoint 59
 Introduction ... 60
 Mathematicians’ views of problem solving .. 60
 What is a problem? .. 61
 The role of problem solving in the development of mathematics 63
 Students’ problem solving as viewed through PISA ... 64
 The role of metacognition in mathematical problem solving ... 66
 References .. 70

THE NATURE OF PROBLEM SOLVING: USING RESEARCH TO INSPIRE 21ST CENTURY LEARNING © OECD 2017
PART II Dynamic problem solving as a new perspective ..73

CHAPTER 5 The PISA 2012 assessment of problem solving ...75

Introduction ...76
Major issues identified ...76
Evolution of the new problem-solving framework ...78
The key features of the PISA 2012 problem-solving framework ..81
Developing the consistency ...82
Examples of test material ...85
Conclusion ..86
Notes ..87
References ...87
Annex 5.A2. Countries and partner economies participating in the OECD PISA 2012 problem-
solving assessment ..91

CHAPTER 6 Interactive problem solving:
Exploring the potential of minimal complex systems ...93

Introduction ...94
Interactive problem solving ..95
Measuring interactive problem solving ...96
The philosophy behind minimal complex systems ...97
The basic elements of minimal complex systems ...98
Common elements of MicroDYN and MicroFIN ...100
Recent results on interactive problem solving ..101
Discussion ...101
Notes ..103
References ...103

CHAPTER 7 The history of complex problem solving ...107

Introduction ...108
Human failures and strategies ...109
Cognitive theories on the process of solving complex problems ..110
Assessment of complex problem solving ..112
Discussion ...114
Trends for future research ...116
Notes ..116
References ...117

PART III Empirical results ..123

CHAPTER 8 Empirical study of computer-based assessment
of domain-general complex problem-solving skills ...125

Introduction ...126
Technology-based assessment and new areas of educational assessment126
From static to dynamic problem solving with reference to reasoning skills127
Aims ..128
Methods ...128
Results ..130
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART III</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 9 Factors that influence the difficulty of problem-solving items</td>
<td>141</td>
</tr>
<tr>
<td>Introduction</td>
<td>142</td>
</tr>
<tr>
<td>Characteristics that might influence task difficulty</td>
<td>142</td>
</tr>
<tr>
<td>The study</td>
<td>146</td>
</tr>
<tr>
<td>Described levels for task characteristics</td>
<td>146</td>
</tr>
<tr>
<td>Sample items with ratings</td>
<td>149</td>
</tr>
<tr>
<td>Analysis and results</td>
<td>151</td>
</tr>
<tr>
<td>Discussion</td>
<td>155</td>
</tr>
<tr>
<td>Possible improvements and future directions</td>
<td>156</td>
</tr>
<tr>
<td>Conclusion</td>
<td>156</td>
</tr>
<tr>
<td>Notes</td>
<td>156</td>
</tr>
<tr>
<td>References</td>
<td>157</td>
</tr>
<tr>
<td>CHAPTER 10 Assessing complex problem solving in the classroom: Meeting challenges and opportunities</td>
<td>159</td>
</tr>
<tr>
<td>Introduction</td>
<td>160</td>
</tr>
<tr>
<td>The Genetics Lab: A microworld especially (PS) developed for the classroom</td>
<td>160</td>
</tr>
<tr>
<td>Challenge 1 – Digital natives</td>
<td>163</td>
</tr>
<tr>
<td>Challenge 2 – Scoring</td>
<td>167</td>
</tr>
<tr>
<td>Summary and outlook</td>
<td>170</td>
</tr>
<tr>
<td>Notes</td>
<td>171</td>
</tr>
<tr>
<td>References</td>
<td>171</td>
</tr>
<tr>
<td>PART IV New indicators</td>
<td>175</td>
</tr>
<tr>
<td>CHAPTER 11 Log-file data as indicators for problem-solving processes</td>
<td>177</td>
</tr>
<tr>
<td>Introduction</td>
<td>178</td>
</tr>
<tr>
<td>What are log files?</td>
<td>178</td>
</tr>
<tr>
<td>A theoretical rationale for analysing log files in problem-solving assessments</td>
<td>179</td>
</tr>
<tr>
<td>Analysis of log files</td>
<td>183</td>
</tr>
<tr>
<td>Discussion</td>
<td>187</td>
</tr>
<tr>
<td>Concluding remarks</td>
<td>188</td>
</tr>
<tr>
<td>References</td>
<td>188</td>
</tr>
<tr>
<td>CHAPTER 12 Educational process mining: New possibilities for understanding students’ problem-solving skills</td>
<td>193</td>
</tr>
<tr>
<td>Introduction</td>
<td>194</td>
</tr>
<tr>
<td>Background: From logs to knowledge</td>
<td>194</td>
</tr>
<tr>
<td>Analysing problem-solving behaviour data: Educational process mining</td>
<td>197</td>
</tr>
<tr>
<td>Objectives</td>
<td>197</td>
</tr>
<tr>
<td>Applying process mining to problem-solving behaviour data</td>
<td>197</td>
</tr>
<tr>
<td>Implications for online problem-solving assessment</td>
<td>206</td>
</tr>
<tr>
<td>References</td>
<td>207</td>
</tr>
</tbody>
</table>

THE NATURE OF PROBLEM SOLVING: USING RESEARCH TO INSPIRE 21ST CENTURY LEARNING © OECD 2017
CHAPTER 13 EcoSphere: A new paradigm for problem solving in complex systems211

Introduction..212
The EcoSphere..212
The EcoSphere program: BioSphere scenario...216
Outlook and conclusion..220
References..221

PART V Future issues: Collaborative problem solving ..225

CHAPTER 14 Assessment of collaborative problem-solving processes227

Introduction..228
Collaborative problem-solving skills: A framework for understanding.......................229
Use of the collaborative problem-solving framework ...232
Assessing collaborative problem solving..236
Analysis..238
Discussion...240
References..241

CHAPTER 15 Assessing conversation quality, reasoning, and problem solving with computer agents...245

Introduction..246
Learning environments with conversational agents...247
Conversational dialogues with AutoTutor...249
Trialogues..252
Closing comments...256
References..257

PART VI Finale ...263

CHAPTER 16 Epilogue ..265

Figures

Figure 4.1 Problem Situation...62
Figure 4.2 A pair of students’ problem-solving activities over time.............................68
Figure 4.3 A mathematician's problem-solving activities over time.............................68
Figure 4.4 A pair of students’ activity-time allocation after a problem-solving course......69
Figure 5.1. MP3 player: Stimulus information...85
Figure 5.2. MP3 player: Item 1..85
Figure 5.3. MP3 player: Item 2..85
Figure 5.4. MP3 player: Item 3..86
Figure 5.5. MP3 player: Item 4..86
Figure 6.1 Structure of a MICS system with two exogenous and two endogenous variable99
Figure 6.2 A simple finite state automaton ...99
Figure 7.1 Screenshot of a simulation of the complex Moro problem110
Figure 7.2 Screenshot of the Tailorshop problem ..113
Figure 7.3 Screenshot of the finite state machine HEIFI ..115
Figure 8.1 Example of tasks in the domain-specific problem-solving test129
Figure 8.2 Example of tasks in the inductive reasoning test ..129
Figure 8.3 Developmental curve of dynamic problem solving132
Figure 8.4 Developmental curve of dynamic problem solving by school type132
Figure 8.5 Correlations between inductive reasoning, intelligence, domain-specific and domain-general problem solving ..133
Figure 9.1. Birthday Party: Stimulus interactive area ...150
Figure 9.2. Birthday Party: Information provided ...150
Figure 9.3. Dendrogram showing clustering of 10 item characteristics153
Figure 10.1. Genetics Lab Task 1: Exploring the creature ...161
Figure 10.2. Genetics Lab Task 2: Documenting the knowledge162
Figure 10.3. Genetics Lab Task 3: Changing the characteristics162
Figure 10.4. Start screen for a creature ..164
Figure 10.5. Feedback on performance at the end of an item165
Figure 10.6. Adapted test development process of the Genetics Lab165
Figure 10.7. ICT familiarity and competence of students ..166
Figure 10.8. Acceptance of the Genetics Lab among students166
Figure 11.1. Interactive Laughing Clowns task (the clown’s mouth is in constant motion) 179
Figure 11.2. Sample log-file record from a text file recorded by the interactive Laughing Clowns task ...179
Figure 11.3. Temporal evidence map segment illustrating hypothetico-deductive reasoning from the single-player Laughing Clowns task .. 184
Figure 11.4. Temporal evidence map segment illustrating typical exploratory behaviour by novice problem solvers from the single-player Laughing Clowns task 185
Figure 11.5. Temporal evidence map segment illustrating guessing behavior from the single-player Laughing Clowns task ...186
Figure 11.6. Temporal evidence map segment illustrating uncertainty about the problem from the single-player Laughing Clowns task ...186
Figure 12.1. Web search item ..195
Figure 12.2. Sample log file ..196
Figure 12.3. The knowledge discovery process ..196
Figure 12.4. Aggregated test-taking processes of students on Item 9 and Item 11 (directed graph) ...199
Figure 12.5. Example of a MicroDYN item ..200
Figure 12.6. Aggregated problem solving behaviour on seven tasks, activities in the first three executions ...201
Figure 12.7. Job search task in PIAAC pre-test study ...205
Figure 12.8. Decision tree for the job search task...205
Figure 12.9. Decision tree for a complex problem-solving task...206
Figure 13.1. Screenshot of a scenario introduction ..217
Figure 13.2. The interface for drawing computer-based causal diagrams218
Figure 13.3. The first BioSphere scenario consists of two exogenous
and three endogenous variables ..219
Figure 14.1. Framework for collaborative problem solving ..230
Figure 14.2. Illustration of an assessment task and of a stimulus-response-to-code structure....234
Figure 14.3. Symmetric task: “Laughing Clowns”...235
Figure 14.4. Asymmetric task: “Olive Oil” ..236
Figure 14.5. Example item characteristic curve observed (dotted line) and modelled (solid line) 239
Figure 14.6. Differential item functioning for Student A and Student B – Typical solution......239

Tables

Table 2.1 Results of expert rating of PISA 2003 test items ..38
Table 2.2 Intraclass correlation and relations with external variables for the
three-dimensional model of analytical problem-solving competence:
Mean differences and correlations ...39
Table 3.1 The four possible outcomes of decisions based upon the controllability
of a situation ..53
Table 6.1 State transition matrix of a fictitious finite state automaton100
Table 8.1 Goodness of fit indices for testing dimensionality of the dynamic
problem solving model ...131
Table 8.2 Goodness of fit indices for measurement invariance
of DPS in the MicroDYN approach ...131
Table 9.1 Proposed task characteristics affecting item difficulty144
Table 9.2 Ratings for MP3 Player Item 2 and Birthday Party Item 1150
Table 9.3 Standardised regression coefficients ..152
Table 9.4 Rotated component matrix ..154
Table 10.1 Sample characteristics of the Genetics Lab studies161
Table 10.2 Means, standard deviations, reliability and intercorrelations
of the Genetics Lab’s performance scores ..170
Table 11.1 A possible partial credit framework for scoring an indicator describing
the quality of exploration ..183
Table 11.2 Example of a tuneable scoring rule for the “time to first action” indicator185
Table 12.1 Process measures to cluster students ..202
Table 12.2 Clustering test takers based on problem-solving behaviour
in an online environment ...202
Table 12.3 Process measures describing test takers’ activities for MicroDYN items203
Table 12.4 Clustering students based on online behaviour on the MicroDYN item203
Table 13.1. Information processing and interaction with the system .. 215
Table 14.1. Components, strand elements and indicative behaviour needed for collaborative problem solving .. 231
Table 14.2. Correlation matrices for Student A and Student B across the social and cognitive strands and their components ... 240
Executive summary

Problem solving is one of the key competencies humans need in a world full of changes, uncertainty and surprise. It is needed in all those situations where we have no routine response at hand. Problem solving requires the intelligent exploration of the world around us, it requires strategies for efficient knowledge acquisition about unknown situations, and it requires creative application of the knowledge available or that can be gathered during the process. The world is full of problems because we strive for so many ambitious goals – but the world is also full of solutions because of the extraordinary competencies of humans who search for and find them.

PISA 2012 addressed the issue of problem-solving competency with two firsts: 1) the use of computer-based assessment methods; and 2) the use of interactive problem solving in its framework (as distinct from static problem solving which was the focus of former PISA problem solving assessments in 2003). Both new approaches require a rethinking of theories, concepts and tools. This reflection will be done within this book. It explains why we made the shift from static to interactive problem solving.

This book presents the background and the leading ideas behind the development of the PISA 2012 assessment of problem solving, as well as some results from research collaborations that originated within the group of experts who guided the development of this assessment.

Part I gives an overview of problem solving and its assessment. In Chapter 1, Benő Csapó and Joachim Funke highlight the relevance of problem solving within a world that relies less and less on routine behaviour and increasingly requires non-routine, problem-solving behaviour. They underline the need for innovative assessments to understand how improved school practices contribute to the development of problem-solving skills in learners. In Chapter 2, Jens Fleischer and colleagues use data from PISA 2003 to demonstrate the importance of analytical problem solving as a cross-curricular competency. Starting with the observation that German students’ analytical problem solving skills are above the OECD average but their maths skills are only average, they develop the cognitive potential exploitation hypothesis: good problem-solving skills could be harnessed to develop mathematics skills. In Chapter 3, Magda Osman argues that complex problems can be represented as decision-making tasks under conditions of uncertainty. This shift in emphasis offers a better description of the skills that underpin effective problem solving, with a focus on the subjective judgments people make about the controllability of the problem-solving context. In Chapter 4, John Dossey describes the mathematical perspective and points to the strong relation between mathematics and problem solving. He emphasises the important role of metacognition and self-regulation in both solving real problems and in the practice of mathematics.

Part II introduces dynamic problem solving as a new perspective within PISA 2012. In Chapter 5, Dara Ramalingam and colleagues present the PISA 2012 definition of problem solving, outline the development of the assessment framework and discuss its key organising elements, presenting examples of static and interactive problems from this domain. In Chapter 6, Samuel Greiff and Joachim Funke describe the core concept of interactive problem solving in PISA 2012 as the interplay of knowledge acquisition and knowledge application to reach a given goal state. Interactive problem
solving differs from static problem solving because some of the information needed to solve the problem has to be found during interaction processes. In Chapter 7, Andreas Fischer and colleagues describe typical human strategies and shortcomings in coping with complex problems, summarise some of the most influential theories on cognitive aspects of complex problem solving, and present experimental and psychometric research that led to a shift in focus from static to dynamic problem solving.

Part III deals with data from different studies presented here because they influenced the thinking around the PISA 2012 problem-solving assessment. In Chapter 8, Gyöngyvér Molnár and colleagues report results from a Hungarian study of students from primary and secondary schools who worked with static and interactive problem scenarios. They found that students’ ability to solve these dynamic problems appears to increase with age and grade level, thus providing evidence that education can influence the development of these skills. At the same time, the measured construct is psychometrically sound and stable between cohorts. In Chapter 9, Ray Philpot and colleagues describe analyses of item characteristics based on the responses of students to PISA 2012 problem solving items. They identified four factors that made problems more or less difficult, which could be helpful for test developers but also researchers and educators interested in developing learners from novice to expert problem-solvers in particular domains. In Chapter 10, Philipp Sonnleitner and colleagues discuss the challenges and opportunities of computer-based complex problem solving in the classroom through the example of Genetics Lab, a newly developed and psychometrically sound computer-based microworld that emphasises usability and acceptance amongst students.

Part IV presents ideas arising from the new computer-based presentation format used in PISA 2012. In Chapter 11, Nathan Zoanetti and Patrick Griffin explore the use of the data from log files, which were not available from paper-and-pencil tests and offer additional insights into students’ procedures and strategies during their work on a problem. They allow researchers to assess not just the final result of problem solving but also the problem-solving process. In Chapter 12, Krisztina Tóth and colleagues show the long road from log-file data to knowledge about individuals’ problem solving activities. They present examples of the usefulness of clustering and visualising process data. In Chapter 13, David Tobinski and Annemarie Fritz present a new assessment tool EcoSphere, which is a simulation framework for testing and training human behavior in complex systems. Its speciality is the explicit assessment of previously acquired content knowledge.

Part V deals with future issues. Three years after PISA 2012 focused on individual problem-solving competencies, PISA 2015 moved into the new and innovative domain of collaborative problem solving, defined as “the capacity of an individual to effectively engage in a process whereby two or more agents attempt to solve a problem by sharing the understanding and effort required to come to a solution and pooling their knowledge, skills and efforts to reach that solution.” In Chapter 14, Esther Care and Patrick Griffin present an alternative assessment of collaborative problem solving that inspired the PISA assessment while being clearly distinct from it. They deal with human-to-human collaboration, in contrast to the human-to-computer design eventually used. In Chapter 15, Arthur Graesser and colleagues, explore the use of “conversational agents” (intelligent computer-based systems that interact with a human) and how dialogues and even trialogues with two agents can be used for new types of assessment.

In summary, these chapters should help to better understand the PISA 2012 results published by OECD in 2014, by giving background information about the framework and its specific realisation. They should also help to better understand the advent of assessment of collaborative problem solving in PISA 2015 – an issue that reflects the increasing importance of collaboration beyond the need for individual problem solving. We hope that this book fulfills its purpose not just of providing information about the background, but of shaping the future of problem-solving research and assessment.

Benő Csapó, Joachim Funke, Andreas Schleicher
PART I

Problem solving: Overview of the domain
Chapter 1

The development and assessment of problem solving in 21st-century schools

By
Benő Csapó

and Joachim Funke
Department of Psychology, Heidelberg University, Germany.

The skills considered most essential in our modern societies are often called 21st-century skills. Problem solving is clearly one of them. Students will be expected to work in novel environments, face problems they have never seen and apply domain-general reasoning skills that are not tied to specific contents. Computerised dynamic problem solving can be used to create just such an interactive problem situation in order to assess these skills. It may therefore form the basis for a type of assessment which helps answer the question of how well schools are preparing their students for an unknown future. This chapter shows how education systems may benefit from such an assessment. It reviews educational methods that have aimed at developing students’ higher-order thinking skills and indicates how experiences with these approaches can be used to improve problem solving, from direct teaching, through content-based methods, to innovative classroom processes. It outlines the evolution of large-scale assessment programmes, shows how assessing problem solving adds value and, finally, identifies some directions for further research.

The preparation of this article was supported during the years 2007 to 2014 by grants Fu 173/11–1, Fu 173/14–1 and Fu 173/14–2 issued by the German Research Foundation (DFG) to the second author within the “Competence Models for Assessing Individual Learning Outcomes and Evaluating Educational Processes” Priority Programme (SPP 1293).

The statistical data for Israel are supplied by and under the responsibility of the relevant Israeli authorities. The use of such data by the OECD is without prejudice to the status of the Golan Heights, East Jerusalem and Israeli settlements in the West Bank under the terms of international law.
Introduction

Several features characterise developed societies at the beginning of the 21st century, but two of these have prevailing consequences for schooling: 1) the determining role of knowledge and skills possessed by their citizens; and 2) the rapid changes apparent in all areas of life. Students therefore not only have to master more knowledge to be able to live a successful life in these societies, but they also have to master a different type of knowledge which enables them to succeed in a rapidly changing environment. This means that if schools only prepare their students for current expectations, their knowledge and skills will be outdated by the time they have to use them in their private life and in the world of work.

Reflecting these expectations, a new term has emerged in recent decades in the discussion about the goals of education: a family of skills considered the most essential in modern societies, often called 21st-century skills. Lists of these skills usually include creativity, innovation, communication, collaboration, decision making, social skills, cross-cultural skills, information and communications technology (ICT) literacy, civic literacy, media literacy, critical thinking, learning to learn and problem solving (see for example Binkley et al., 2012). However, when these skills are examined in detail, it often turns out that there are very few research results related to some of them, and some of them are difficult to define and specify precisely enough to be measured. Furthermore, in most cases, it is even more difficult to find methods for developing them.

Problem solving stands out in this group as it has been researched for several decades (Frensch and Funke, 1995; Funke and Frensch, 2007; Klieme, 2004; Mayer, 1992). Although problem solving is a general term and the corresponding field of research is very broad, several forms of problem solving are well defined and there are clear distinctions between some of them, for example between domain-specific and domain-general as well as between analytic and complex problem solving (Fischer, Greiff and Funke, 2012; Greiff, Holt and Funke, 2013; Greiff et al., 2013; Wüstenberg, Greiff and Funke, 2012). It is also known from research that complex problem solving, like most complex skills, develops over a long period (Molnár, Greiff and Csapó, 2013; Wüstenberg et al., 2014).

Because of its complex nature and long developmental time, there is little firm evidence showing how different educational methods stimulate its enhancement. The long-term impact of education on other cognitive abilities has been studied since the very beginning of research on intelligence. The general conclusion of such studies is that education improves general cognitive abilities: there is a clear relationship between years spent at school and level of cognitive abilities. A recent longitudinal study indicated that students taking academic tracks made greater gains than those receiving vocational education (Becker et al., 2012); furthermore, the results of a long-term longitudinal study suggest that the impact of education may be subject-specific rather than general (Ritchie, Bates and Deary, 2015). It was the problem solving assessment in the 2012 Programme for International Student Assessment (PISA) which first provided data that demonstrated that there are large differences between educational systems in terms of improving a well-defined cognitive ability.

As problem solving was the fourth (innovative) domain of the 2012 assessment, it was possible to compare the impacts of different education systems on performance in three main domains and on problem solving. The results of these comparisons have shown that even countries which are very good at teaching reading, mathematics and science literacy may be weaker in developing students’ problem-solving abilities (OECD, 2014). Figure 1.1 demonstrates these differences. This analysis applied a regression model to predict the problem-solving performance of the countries participating in this assessment, based on their performance in the three main domains. The figure shows the difference between expected levels of problem solving (predicted by the regression analysis) and the measured levels.
Figure 1.1 Relative performance in problem solving

<table>
<thead>
<tr>
<th>Country</th>
<th>Students’ performance in problem solving is lower than their expected performance</th>
<th>Students’ performance in problem solving is higher than their expected performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serbia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>England (United Kingdom)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macao-China</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russian Federation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovak Republic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colombia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OECD average</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese Taipei</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hong Kong-China</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Croatia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montenegro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uruguay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shanghai-China</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: OECD (2014), PISA 2012 Results: Creative Problem Solving (Volume V)
Student Skills in Tackling Real-Life Problems
StatLink ➝ http://dx.doi.org/10.1787/9789264208070-en, p. 69, Fig. V.2.15.
There are some countries where mathematics, science, and reading performance is high or has improved a great deal in the past decade, for example Shanghai-China and Poland, but problem-solving performance is relatively low. Other countries, such as Korea and Japan, perform well in the main domains and even better in problem solving than could be predicted simply on the basis of their other results. Students from the United States also perform better than expected (Dossey and Funke, 2016). In a country-by-country comparison of performance, a variety of patterns can be identified, clearly indicating that improving problem solving requires something other than teaching the main domains well. In this assessment, about 32% of the variance of problem-solving skills is not explained by the reading, mathematics and science scores. Although the reasons for these differences cannot be precisely identified based on the available data from this assessment, it is clear that the teaching and learning methods used in some countries are more effective at developing problem solving than others.

These results may provide an impetus for research on methods of improving problem solving in an educational context. Although this may be an emerging field of research, the intention of developing cognitive abilities and research in this field is not new at all. Experiences from previous attempts at improving cognitive abilities may also be used in the field of problem solving. In past work, there has been a close interaction between teaching and assessment processes both in research and in educational practice. It is therefore reasonable to also deal with these two aspects of problem solving in parallel. Bloom’s classical taxonomies were used both to describe and operationalise educational objectives on the one hand, and as the foundation of assessment instruments on the other (Bloom et al., 1956). In modern educational systems, curricula and assessment frameworks are often developed in parallel. Making cognitive constructs measurable is a precondition for systematic improvement; conversely, the emergence of new teaching methods calls for the development of specific assessment instruments.

Following this logic, the next sections describe the evolution of teaching methods which aim at improving the quality of knowledge and developing higher-order thinking skills, and show how they may serve as models for improving problem solving as well. They then outline the changes in large-scale international assessment, in parallel with those observed in teaching, that enable them to measure newer attributes of knowledge, and summarise the role dynamic problem solving plays in these developments. Finally, the chapter outlines the prospects for assessing and developing problem solving as a result of the PISA assessment and the research it has initiated.

Educational methods aimed at improving the quality of knowledge

Traditional conceptions of learning focused on memorising facts and figures and reproducing them in an unchanged context. Teachers were considered the sources of knowledge, and classroom work was typically teacher-directed. On the other hand, the intentions of cultivating students’ minds, preparing them to reason better, and helping them to be able to use their knowledge beyond the school context are as old as organised schooling itself. Although these were the declared goals, they often remained slogans simply because of the lack of scientific background and practical knowledge, and so rote learning dominated everyday practice. Collaboration, creativity and problem solving were also listed among educational goals in the past century, but in reality only a small proportion of students were actually required to apply these skills in their work and in everyday life.

A number of instructional experiments in the 20th century produced remarkable results beyond rote learning, but they failed to spread to entire education systems. As rapid technological, social and economic development at the beginning of this century has made it essential for most citizens to acquire new cognitive skills at a high level in order to find a job in the knowledge economy, these earlier innovations may need to be re-evaluated. This section considers four kinds of earlier or more recent developments which may be relevant to problem solving in education. Although,
as the previous section noted, it is not known why some education systems are more successful at developing problem-solving skills than others, the intensity and frequency with which they use these approaches may contribute to their results.

Direct teaching of thinking skills

The rise of research on general cognitive abilities has inspired a number of educational methods aimed at improving these abilities. The first developmental programmes were independent of any school subject and aimed at developing very general cognitive constructs or even intelligence. Depending on the interpretation of general cognitive abilities, it is still disputed which components can be taught and to what extent, if at all. In educational contexts, models of plastic general ability have proved to be more fruitful than the rigid single-factor conception of intelligence. This shift is also supported by recent research in cognitive neuroscience (for an elaboration of this issue, see Adey et al., 2007).

One of the most well-known programmes in this category was Feuerstein’s Instrumental Enrichment Program, which was effective in some applications, for example children with special educational needs and socially handicapped students, but did not produce the expected results when more broadly applied (see Blagg, 1991). Klauer devised a series of better-specified intervention programmes for the development of inductive reasoning (based on an operational definition), starting with materials for the direct training of young and handicapped children (Klauer, 1989) and continuing with more broadly applicable training programmes, including the development of problem solving (Klauer and Phye, 1994).

The main difficulty with these direct, independent, stand-alone programmes was that they required specific training (extra efforts beyond the usual instructional processes) which meant they were usually short. Their lasting impact and the transfer of any effects to other skills or broader contexts often remained insufficient. On the other hand, these intervention studies resulted in a number of particular intervention methods and provided rich experiences of aspects of trainability such as the sensitive age, effect size, transfer and duration of effects, which could then be used in designing instructional programmes. Experiments on the direct development of problem solving (such as Kretzschmar and Süß, 2015) may have a similar positive influence on educational applications.

Content-based methods: Integrating the teaching of disciplinary content and improving reasoning

A more fruitful approach seems to be the use of improved teaching materials for developing specific reasoning skills, as the disciplinary materials are there anyway and the time students spend mastering a subject can also be used to improve general cognitive abilities. These approaches are often called infusion methods, embedding or enrichment; each term indicates that some extra developmental effect is added to the traditional instructional processes (see Csapó, 1999 for a general overview of this approach).

Cognitive Acceleration through Science Education (CASE) is one of the best elaborated and most broadly tested developmental programmes in this category (Adey and Shayer, 1994; Adey, Shayer and Yates, 2001). Its embedded training effects not only improve general cognitive abilities, but also aid in a better mastery of science content. It thus meets the requirements of other progressive instructional approaches, such as “teaching for understanding” and “teaching for transfer”.

Other content-based methods for developing problem solving use slightly different approaches aimed at developing problem-solving competencies. Problem-based instruction (PBI, see Mergendoller, Maxwell and Bellissimo, 2006 for an example) or problem-based learning (PBL, Hmelo-Silver, 2004; for a meta-analysis of its effects, see Dochy et al., 2003) organise teaching and learning around larger,
complex, natural problems which often require active reasoning as well as the mobilisation and integration of knowledge from several traditional school subjects.

These integrated, content-based methods are often used to increase students’ interest and motivation. As they are usually implemented within instructional time, they have the potential for broader application. The results of training experiments indicate that durable impacts can only be expected from long-term interventions, and long-term intervention can only realistically be implemented if they use improved (enriched) regular teaching processes.

Enhancing instruction to improve problem-solving abilities

A number of specific improvements in instructional processes which offer the possibility of improving problem solving have also been studied. Implementing them systematically in everyday school processes would have a measurable cumulative impact.

Using representations may contribute to a better understanding of learning materials in general, but representing complex problems properly is the first step in a successful problem solving process. Training students to use representations, especially multiple representations (e.g. depictive and descriptive), and practising the transformations between representations may facilitate the development of problem solving as well (Schnitz et al., 2010). In a similar way, visualisation (for which computerised teaching materials offer excellent opportunities) supports the mastery of content knowledge and at the same time improves problem-solving skills (Wang et al., 2013).

Computer-based simulations of problem situations are an important condition for the assessment of dynamic problem solving, and may be used for developmental purposes as well (e.g. Rivers and Vockell, 2006). Similar to the idea of simulation is gamification or game-based learning. This rapidly developing area of educational technology engages students in well-structured serious games which require them to practise certain reasoning skills. Simulation may help students understand some complicated phenomena, while game-based learning combines learning and entertainment and so makes learning more exciting and improves student perseverance (Connolly et al., 2012; Hwang and Wu, 2012). These methods have been tested for the development of problem solving in a number of different areas and contexts (for example Chang et al., 2012; Rowe et al., 2011; Spires et al., 2011).

A number of studies have shown that training students to better monitor their own learning processes, thus facilitating self-regulated learning and metacognition, may also contribute to the improvement of problem solving (Montague, 2008; Perels, Gürtler and Schmitz, 2005).

Schoenfeld has generalised his work on teaching methods of mathematical problem solving and developed his theory of goal-oriented decision making, which is then applicable in broader teaching contexts, including the improvement of problem solving (Schoenfeld, 2011). He builds on monitoring and self-regulation, which are components of several other innovative methods as well. Metacognition and self-regulated learning help students to develop their own problem-oriented study processes.

Global approaches to improving interest, motivation and the quality of learning

Modern constructivist theories describe learning as an interaction with the environment, with the teacher’s role being to provide students with a stimulating physical and social environment and to guide their students through their own developmental processes (e.g. Dumont, Istance and Benavides, 2010). A number of methods to enhance environmental effects have recently been piloted and introduced into educational practice; these are sometimes called “innovative learning environments” (OECD, 2013a) or, if enhanced with ICT, “powerful learning environments”
Some of these methods have already been introduced into everyday school practices, such as working in pairs and several forms of group work which build on the benefits of social interaction. Collaborative learning, especially its computer-mediated form, also creates excellent opportunities for the development of problem solving (Uribe, Klein and Sullivan, 2003). These types of activities already form a bridge towards collaborative problem solving (e.g. Rummel and Spada, 2005), which was the innovative domain of the PISA 2015 assessment.

Discovery learning builds on students' curiosity and may be very motivating (Alfieri et al., 2011). Similarly, inquiry-based learning takes place through students' active observation and experimentation; inquiry-based science education (IBSE) has recently become especially popular (Furtak et al., 2012). IBSE aims to introduce the basic processes of scientific research into the practices of school instruction. One of its declared goals is to develop scientific reasoning and other higher-order thinking skills by creating and testing hypotheses. This is one of the most broadly studied methods used to revitalise science education; indeed, the European Union has supported more than 20 IBSE projects during the past decade.

Developing the scope of international assessment programmes

Countries' educational cultures differ with respect to the depth and frequency of the application of these approaches to teaching. It seems a plausible hypothesis that the methods described above better prepare students for an unknown future than traditional direct teaching. To test this hypothesis and to measure the cumulative impact of these innovative methods on real learning outcomes, however, also requires the development of innovative assessment instruments. This need initiated the assessment of problem solving in PISA 2003 (OECD, 2005). Nine years later, the development of technology made it possible to overcome the limitations of paper-based assessments for assessing problem-solving skills at the level of education systems. This section provides an overview of how large-scale assessment projects have evolved from the early curriculum-based surveys through the application-oriented conception of literacy to the assessment of higher-order thinking skills.

This overview considers a three-dimensional (curricular content knowledge, application of knowledge and psychological dimension) approach to the goals of learning (Csapó, 2010) and shows how they complement each other.

Curriculum-based content-focused assessments

The first international assessment programmes were the International Association for the Evaluation of Educational Achievement (IEA) studies in the 1970s and 1980s. They were based on an analysis of the curricula of participating countries. Bloom's taxonomies (Bloom et al., 1956) governed the analysis of curricula and the development of assessment frameworks. The content assessed was thus almost identical with what was taught at schools.

However, one of the most obvious experiences of school education is that students usually cannot apply the knowledge they have mastered at school in a new context. In other words, the transfer of knowledge is not automatic. Some traditional forms of teaching result in inert knowledge, as they are not effective in facilitating the application and improving the transfer of knowledge.

These experiences initiated changes in the IEA surveys, and the Trends in International Mathematics and Science Study (TIMSS) assessments, which have been carried out regularly every four years since 1995, measure a broader range of competencies. The most recent framework of TIMSS mathematics and science assessment deals with broad categories such as knowing, applying and reasoning (Mullis and Martin, 2013).
Assessing the application of knowledge

Although assessing the ability to apply knowledge was a goal of early international assessment programmes (Bloom’s taxonomy also considers application), they did not elaborate the scope and areas of transfer and application played a secondary role. The cognitive revolution in psychology in the decades preceding the launch of the PISA assessments initiated new directions for research on human information processing as well as for knowledge and skills as outcomes of learning.

These new insights and empirical research results have found their way into educational applications. The OECD’s PISA programme has also drawn from this knowledge base. The OECD’s Definition and Selection of Key Competencies (DeSeCo) programme drew on results from the cognitive sciences and interpreted the conception of competencies in the context of school education (Rychen and Salganik, 2001). The first PISA frameworks reinterpreted the conception of literacy and elaborated the definitions of reading literacy, mathematical literacy and scientific literacy as forms of knowledge that are applicable in typical contexts of modern societies.

In sum, the early assessment programmes deduced their frameworks from the knowledge of particular scientific disciplines (science and mathematics), while PISA added a new dimension: the application of knowledge. Literacies – in other words, the conception of broadly applicable knowledge and skills (e.g. PISA assessment frameworks) – can be deduced from the social environments, expectations and demands of modern life. More precisely, it is not what students have been taught, but what they are expected to know that directs the development of frameworks, beyond taking into account the most recent results from cognitive research and research on learning and instruction in general (OECD, 2013b).

Assessing general cognitive skills: The psychological dimensions of knowledge

Neither the knowledge base of mathematics and science and other disciplines, nor the present social demands for applicable knowledge provides a perfect source to determine the skills that will be needed in the future. It seems plausible that students can be prepared for an unknown future by developing their general cognitive skills.

This new need to assess a further dimension of knowledge is marked by the large number of publications dealing with this new future orientation. Some deal with the assessment of higher-order thinking skills (Schraw and Robinson, 2011), 21st-century skills (Griffin and Care, 2015; Mayrath et al., 2012), a variety of competencies (Hartig, Klieme and Leutner, 2008), and, especially, problem solving (Baker et al., 2008; Ifenthaler et al., 2011).

Dynamic problem solving, the innovative domain of PISA 2012, has all the features of such an assessment, evaluating how well students are prepared to solve problems where they do not have ready-made, well-practised routine solutions. Nevertheless, to integrate such a domain into the system of assessments and to develop a framework for it, really requires an anchoring in the psychology of human reasoning: knowledge of human information processing in general, and the psychology of problem solving in particular.

The relevance of assessing problem solving for PISA

When students are expected to work in a novel environment and face problems they have never seen, they cannot use content knowledge they have mastered before but they can apply their domain-general reasoning skills that are not tied to specific content. They have to understand the situation, create a model, and, through interaction with a particular segment of the environment, explore how it responds and behaves. The knowledge gained from this interaction can then be used to build a model, generalise new knowledge and subsequently use it to solve the actual problem.
Computerised dynamic problem solving creates such a problem situation. It may thus form the basis for a type of assessment which helps us to answer the question of how well schools prepare their students for an unknown future.

In a dynamic problem-solving task, students face a system that simulates a real system and behaves similarly to it. The problem-solving process typically has two main phases (see Funke, 2001): a knowledge acquisition phase and a knowledge application phase. Problem solvers have to mobilise a number of operational reasoning skills as well as higher-order thinking skills in both phases. First, they have to understand the simulated system as a whole and then identify the relevant variables of the system. In this phase, they may apply their analogical thinking in search of already known analogous systems. Then they have to manipulate the variables systematically and observe how changing the value of one variable affects the value of other variables. In the meantime, they may use a number of combinatorial and classification operations, propositional reasoning skills, etc. By organising the results of their observations, they induce some rules and test if the rules are valid. When they are convinced that the rules they have just discovered are correct, they begin to apply this newly mastered knowledge. In the knowledge application phase, they may again use a number of further reasoning skills (Greiff and Funke, 2009; Greiff, Wüstenberg and Funke, 2012).

Knowledge acquisition is an important process in learning the content of school subjects, and knowledge application is required for PISA literacy tasks when knowledge mastered in one situation is applied to another one. However, dynamic problem solving assesses students’ cognitive skills in a clearer, better-controlled situation, where the results are less masked by the availability of the knowledge students have mastered before.

Conclusions for further research and development

To illustrate the nature of the difficulties we face when we consider the prospects for fostering problem solving in schools, we may use an analogy from physics. We know that nuclear fusion is possible and that it produces immense energy. It is derived from theories of physics, and we know that the sun produces its energy via nuclear fusion. Humans have also created conditions in which nuclear fusion takes place: the hydrogen bomb, which also generates an incredible amount of energy. Thus, it is proven that nuclear fusion works, its mechanisms are known, but we do not have the technology yet that could harness nuclear fusion to produce energy for everyday purposes.

Similarly, even if it is proven that general cognitive abilities are amenable, and the skills underpinning problem solving have already been successfully developed in a number of well-controlled experiments, there is still a long road before we have school curricula and teaching and learning practices that develop problem solving much better than today’s schools. Looking back at the history of research on problem solving, we see that the majority of studies have been exploring the mechanisms of problem solving, mostly under laboratory conditions and with simple static tasks. Tests that are usable in an educational context are a recent development, although the availability of good measurement instruments is a precondition for the design of intervention experiments and controlled implementation of large-scale developmental programmes. The PISA 2012 assessment is a ground-breaking enterprise from this perspective, as it demonstrates the possibilities of computer-based assessment in a number of different educational systems.

For now, researchers should first outline a roadmap of research that would produce evidence for the improvement of practice. Such a map would probably include the study of school practices in countries which perform better in problem solving than expected on the basis of their achievement in the main domains (see Buchwald, Fleischer and Leutner, 2015, who discuss a “cognitive potential exploitation hypothesis”). Although it is very difficult to import good practices from one complex educational culture into another, a deeper understanding of how schooling helps students to become better problem solvers in one country may help to improve practices in other countries as well.
Studying the structure and development of problem solving in an educational context also still offers a great deal of potential. Cross-sectional assessments with a large number of background variables may produce results in a short period. In particular, understanding the role of precursors and the early development of component skills may be beneficial, as recent research has underscored the importance of early development. Longitudinal studies, on the other hand, may take a longer time but provide data on real developmental trajectories. Studying the factors that determine development should include a broad range of affective variables.

Finally, experiments for developing problem solving in real educational contexts should be encouraged. Taking into account the multi-causal character of such development, it will be impossible to find a single, simple solution. Experiences from former programmes for developing other higher-order thinking skills suggest that stable outcomes may only result from continuous stimulation of cognition over a long period. As there is no reasonable way to teach problem solving in separate courses, the most promising solutions are those that embed training in problem solving into regular school activities. A number of intervention points should be explored, including standards, assessment frameworks, textbooks, classroom practices and extra-curricular activities. Technology may again be helpful in this matter: simulation and gamification, especially online educational games, may offer unexplored potential for developing problem solving.

References

Klauer, K.J. (1989), Denktraining für Kinder, Hogrefe, Göttingen.

Mullis, I.V.S. and M.O. Martin (eds.) (2013), TIMSS 2015 Assessment Frameworks, TIMSS & PIRLS International Study Center, Boston College, Chestnut Hill, MA.

