
Acta Cybernetica 22 (2016) 687–701.

On Nonpermutational Transformation Semigroups

with an Application to Syntactic Complexity∗

Szabolcs Iván† and Judit Nagy-György†

Abstract

We give an upper bound of n((n−1)!−(n−3)!) for the possible largest size
of a subsemigroup of the full transformational semigroup over n elements con-
sisting only of nonpermutational transformations. As an application we gain
the same upper bound for the syntactic complexity of (generalized) definite
languages as well.

1 Introduction

A language is generalized definite if membership can be decided for a word by
looking at its prefix and suffix of a given constant length. Generalized definite lan-
guages and automata were introduced by Ginzburg [6] in 1966 and further studied
in e.g. [4, 5, 13, 15]. This language class is strictly contained within the class of
star-free languages, lying on the first level of the dot-depth hierarchy [1]. This class
possess a characterization in terms of its syntactic semigroup [12]: a regular lan-
guage is generalized definite if and only if its syntactic semigroup is locally trivial
if and only if it satisfies a certain identity xωyxω = xω. This characterization is
hardly efficient by itself when the language is given by its minimal automaton, since
the syntactic semigroup can be much larger than the automaton (a construction
for a definite language with state complexity – that is, the number of states of its
minimal automaton – n and syntactic complexity – that is, the size of the transition
semigroup of its minimal automaton – be(n − 1)!c is explicit in [2]). However, as
stated in [14], Sec. 5.4, it is usually not necessary to compute the (ordered) syntac-
tic semigroup but most of the time one can develop a more efficient algorithm by
analyzing the minimal automaton. As an example for this line of research, recently,
the authors of [9] gave a nice characterization of minimal automata of piecewise
testable languages, yielding a quadratic-time decision algorithm, matching an al-
ternative (but of course equivalent) earlier (also quadratic) characterization of [17]
which improved the O(n5) bound of [16].

∗Both authors were supported by the European Union and the State of Hungary, co-financed
by the European Social Fund in the framework of TÁMOP 4.2.4.A/2-11-1-2012-0001 National
Excellence Program. Szabolcs Iván was also supported by NKFI grant number K108448.
†University of Szeged, Hungary, E-mail: {szabivan@inf,ngyj@math}.u-szeged.hu

DOI: 10.14232/actacyb.22.3.2016.9

688 Szabolcs Iván and Judit Nagy-György

There is an ongoing line of research for syntactic complexity of regular lan-
guages. In general, a regular language with state complexity n can have a syntactic
complexity of nn, already in the case when there are only three input letters. There
are at least two possible modifications of the problem: one option is to consider
the case when the input alphabet is binary (e.g. as done in [7, 10]). The second
option is to study a strict subclass of regular languages. In this case, the syntactic
complexity of a class C of languages is a function n 7→ f(n), with f(n) being the
maximal syntactic complexity a member of C can have whose state complexity is
(at most) n. The syntactic complexity of several language classes, e.g. (co)finite,
reverse definite, bifix–, factor– and subword-free languages etc. is precisely deter-
mined in [11]. However, the exact syntactic complexity of the (generalized) definite
languages and that of the star-free languages (as well as the locally testable or the
locally threshold testable languages) is not known yet.

In this note we give an upper bound for the maximal size of a subsemigroup of
Tn, the transformation semigroup of {1, . . . , n}, consisting of “nonpermutational”
transformations only. These are exactly the (transformation) semigroups satisfying
the identity yxω = xω. It is known that a language is definite iff its syntactic
semigroup satisfies the same identity; thus as a corollary we get that the same
bound is also an upper bound for the syntactic complexity of definite languages.

We also give a forbidden pattern characterization for the generalized definite
languages in terms of the minimal automaton, and analyze the complexity of the
decision problem whether a given automaton recognizes a generalized definite lan-
guage, yielding an NL-completeness result (with respect to logspace reductions)
as well as a deterministic decision procedure running in O(n2) time (on a RAM
machine). Analyzing the structure of their minimal automata we conclude that the
syntactic complexity of generalized definite languages coincide with that of definite
languages.

2 Notation

When n ≥ 0 is an integer, [n] stands for the set {1, . . . , n}. For the sets A and B,
AB denotes the set of all functions f : B → A. When f ∈ AB and C ⊆ B, then
f |C ∈ AC denotes the restriction of f to C. When A1, . . . , An are disjoint sets, A
is a set and for each i ∈ [n], fi : Ai → A is a function, then the source tupling of
f1, . . . , fn is the function [f1, . . . , fn] :

(⋃
i∈[n]

Ai

)
→ A with a[f1, . . . , fn] = afi for

the unique i with a ∈ Ai.

Tn is the transformation semigroup of [n] (i.e. [n][n]), where composition is
understood as p(fg) := (pf)g for p ∈ [n] and f, g : [n] → [n] (i.e., transformations
of [n] act on [n] from the right to ease notation in the automata-related part of
the paper). Elements of Tn are often written as n-ary vectors as usual, e.g. f =
(1, 3, 3, 2) is the member of T4 with 1f = 1, 2f = 3, 3f = 3 and 4f = 2.

When f : A → A is a transformation of a set A, and X is a subset of A, then
Xf denotes the subset {xf : x ∈ X} of A.

Nonpermutational transformation semigroups and syntactic complexity 689

A transformation f : A→ A of a (finite) set A is nonpermutational if Xf = X
implies |X| = 1 for any nonempty X ⊆ A. Otherwise it’s permutational. NPn

stands for the set of all nonpermutational transformations of [n].
Another class of functions used in the paper is that of the elevating functions:

for the integers 0 < k ≤ n, a function f : [k] → [n] is elevating if i ≤ if for each
i ∈ [k] with equality allowed only in the case when i = n (note that this also implies
k = n as well).

We assume the reader is familiar with the standard notions of automata and
language theory, but still we give a summary for the notation.

An alphabet is a nonempty finite set Σ. The set of words over Σ is denoted Σ∗,
while Σ+ stands for the set of nonempty words. The empty word is denoted ε. A
language over Σ is an arbitrary set L ⊆ Σ∗ of Σ-words.

A (finite) automaton (over Σ) is a system A = (Q,Σ, δ, q0, F) where Q is the
finite set of states, q0 ∈ Q is the start state, F ⊆ Q is the set of final (or accepting)
states, and δ : Q × Σ → Q is the transition function. The transition function δ
extends in a unique way to a right action of the monoid Σ∗ on Q, also denoted δ
for ease of notation. When δ is understood, we write q · u, or simply qu for δ(q, u).
Moreover, when C ⊆ Q is a subset of states and u ∈ Σ∗ is a word, let Cu stand for
the set {pu : p ∈ C} and when L is a language, CL = {pu : p ∈ C, u ∈ L}. The
language recognized by A is L(A) = {x ∈ Σ∗ : q0x ∈ F}. A language is regular if it
can be recognized by some finite automaton.

The state q ∈ Q is reachable from a state p ∈ Q in A, denoted p �A q, or just
p � q if there is no danger of confusion, if pu = q for some u ∈ Σ∗. An automaton
is connected if its states are all reachable from its start state.

Two states p and q of A are distinguishable if there exists a word u ∈ Σ∗ such
that exactly one of pu and qu belongs to F . In this case we say that u separates
p and q. A connected automaton is called reduced if each pair of distinct states is
distinguishable.

It is known that for each regular language L there exists a reduced automaton,
unique up to isomorphism, recognizing L. This automaton AL can be computed
from any automaton recognizing L by an efficient algorithm called minimization
and is called the minimal automaton of L.

The classes of the equivalence relation p ∼ q ⇔ p � q and q � p are called
components of A. A component C is trivial if C = {p} for some state p such that
pa 6= p for any a ∈ Σ, and is a sink if CΣ ⊆ C. It is clear that each automaton
has at least one sink and sinks are never trivial. The component graph Γ(A) of A
is an edge-labelled directed graph (V,E, `) along with a mapping c : Q→ V where
V is the set of the ∼-classes of A, the mapping c associates to each state q its class
q/ ∼= {p : p ∼ q} and for two classes p/ ∼ and q/ ∼ there exists an edge from
p/ ∼ to q/ ∼ labelled by a ∈ Σ if and only if p′a = q′ for some p′ ∼ p, q′ ∼ q. It is
known that the component graph can be constructed from A in linear time. Note
that the mapping c is redundant but it gives a possibility for determining whether
p ∼ q holds in constant time on a RAM machine, provided Q = [n] for some n > 0
and c is stored as an array.

When A = (Q,Σ, δ, q0, F) is an automaton, its transformation semigroup T (A)

690 Szabolcs Iván and Judit Nagy-György

consists of the set of transformations of Q induced by nonempty words, i.e. T (A) =
{uA : u ∈ Σ+} where uA : Q → Q is the transformation defined as q 7→ qu.
The state complexity stc(L) of a regular language L is the number of states of its
minimal automaton AL while its syntactic complexity syc(L) is the cardinality of its
transformation semigroup T (AL). The syntactic complexity of a class of languages
C is a function f : N→ N defined as

f(n) = max{syc(L) : L ∈ C, stc(L) ≤ n},

i.e. f(n) is the maximal size that the transformation semigroup of a minimal
automaton of a language belonging to C can have, provided the automaton has at
most n states.

3 Semigroups of nonpermutational transforma-
tions

Observe that NPn is not a semigroup (i.e., not closed under composition) when
n > 2. Indeed, if f = (2, 3, 3) and g = (1, 1, 2) (both being nonpermutational), then
their product fg = (1, 2, 2) is permutational with {1, 2}fg = {1, 2}. (See Figure 1.)

1 2 3

f f

g g

g f

Figure 1: f and g are nonpermutational, fg is permutational

Thus, the following question is nontrivial: how large a subsemigroup of Tn,
which consists only of nonpermutational transformations can be? The obvious
upper bound is nn, the size of Tn.

As a first step we give an upper bound of nn−2. Observe that the following
are equivalent for a function f : [n]→ [n]:

i) f is nonpermutational;

ii) the graph of f is a rooted tree with edges directed towards the root, and with
a loop edge attached on the root;

iii) fω, the unique idempotent power of f is a constant function.

Here “the graph of f” is of course the directed graph Γf on vertex set [n] and with
(i, j) being an edge iff if = j.

Indeed, assume f is nonpermutational. Let X be the set of all nodes of Γf lying
on some closed path. (Since each node of the finite graph Γf has outdegree 1, X
is nonempty.) Then Xf = X, thus |X| = 1, i.e. f has a unique fixed point Fix(f)

Nonpermutational transformation semigroups and syntactic complexity 691

and apart from the loop edge on Fix(f), Γf is a directed acyclic graph (DAG)
with each node distinct from Fix(f) having outdegree 1 – that is, a tree rooted
at Fix(f), with edges directed towards the root, showing i) → ii). Then fn is a
constant function with value Fix(f), showing ii)→ iii); finally, if Xf = X for some
nonempty X ⊆ [n], then Xfω = X, showing |X| = 1 since the image of fω is a
singleton.

Now from ii) we get that the members of NPn are exactly the rooted trees with
edges directed towards the root on which a loop edge is attached – we call such
a graph an inverted looped arborescence, or ILA for short. By Cayley’s theorem
on the number of labeled rooted trees over n nodes, the number of all ILAs (i.e.,
|NPn|) is nn−2, giving a slightly better upper bound.

To achieve an upper bound of n!, suppose S ⊆ NPn is a subsemigroup of
Tn. For i ∈ [n], let Si ⊆ S be the subsemigroup {f ∈ S : Fix(f) = i} of S. Note
that Si is indeed a semigroup: by assumption, S is closed under composition and
consists of nonpermutational transformations only, moreover, if i is the common
(unique) fixed point of f and g, then it is also a fixed point of fg as well, thus Si

is closed under composition.

We give an upper bound of (n− 1)! for |Si|, i ∈ [n], yielding |S| ≤ n!. To
this end, let Γi be the graph on vertex set [n] with (j, k) being an edge iff jf = k
for some f ∈ Si. Then, apart from the trivial case when Si = ∅, (i, i) is an edge
in Γi, moreover i is a sink (since if = i for each f ∈ Si). Note that in the case
when Si = ∅, |Si| = 0 ≤ (n− 1)! clearly holds. Observe that Γi is transitive, since
if (j, k) and (k, `) are edges of Γi, then jf = k and kg = ` for some f, g ∈ Si; since
Si is a semigroup, fg is also in Si thus (j, `) is also an edge in Γi. Now assume
some node j ∈ [n] is in a nontrivial strongly connected component (SCC) of Γi, i.e.
j lies on some closed path. By transitivity, (j, j) is an edge of Γi, thus jf = j for
some f ∈ Si, thus j = i since i = Fix(f) is the unique fixed point of f ∈ Si. Hence
by dropping the edge (i, i) we get a DAG again, thus Γi (viewed as a relation) is
a strict partial ordering of [n] with largest element i. Let ≺i stand for this partial
ordering, i.e., let j ≺i k if and only if j 6= i and jf = k for some f ∈ Si. Let us
also fix some arbitrary total ordering <i extending ≺i and write the members of
[n] in the order ai,1 <i ai,2 <i . . . <i ai,n = i. Then for any f ∈ Si and 1 ≤ j < n
we have ai,j <i ai,jf , and ai,nf = ai,n. Since the number of functions f : [n]→ [n]
satisfying this constraint is (n−1)! (ai,1 can get (n−1) different possible values, ai,2
can get (n− 2) etc.), we immediately get |Si| ≤ (n− 1)! as well, yielding |S| ≤ n!.

Via a somewhat cumbersome case analysis we can sharpen this upper
bound to n((n− 1)!− (n− 3)!). Without loss of generality assume that Sn is (one
of) the largest of the semigroups Si and that <n is the usual ordering < of [n] (we
can achieve this by a suitable bijection).

Lemma 1. Suppose for each i < j and k < ` with i 6= k there exists a function
f ∈ Sn with if = j and kf = `.

Then the following holds for each i, j ∈ [n] and f ∈ Si:

i) if j < i, then j < jf ;

692 Szabolcs Iván and Judit Nagy-György

ii) if i ≤ j, then jf = i.

Proof. By assumption, the statements clearly hold for i = n. Let i < n be arbitrary
and f ∈ Si a transformation. Clearly if = i by the definition of Si. Also, nf < n
since i 6= n is the unique fixed point of f .

Suppose jf < j for some j. Then jf = nf has to hold: if jf 6= nf , then by
assumption jfg = j and nfg = n for some g ∈ Sn, thus both j and n are distinct
fixed points of fg, a contradiction. (See Figure 2.) This implies in particular that
j ≤ jf for each j < nf .

Also, if nf < i, then nfg = i and ig = n for some g ∈ Sn, in which case fgfg
has two distinct fixed points n and i, a contradiction. (See Figure 2.) Thus i ≤ nf .

jf j

nf n

g

f

g

f nf i ng g

f

f

Figure 2: Left: if jf < j, jf 6= nf , then fg has two fixed points. Right: If nf < i,
then fgfg has two fixed points

Assume i < nf . Then (since nfn = i < nf) there is some k > 0 such that
nfk+1 < nf . If k is chosen to be the smallest possible such k, then nf ≤ nfk,
yielding (nfk)f < nf ≤ nfk, a contradiction (by (nfk)f < nfk, it should hold
that (nfk)f = nf , see Figure 3). Hence i = nf is the unique fixed point of f and
for each j < i, j < jf indeed has to hold, showing i).

i nfk+1 nf nfk n
f

g

f

g

Figure 3: If i < nf , then fg has two distinct fixed points

Finally, assume i < j < jf . Then ig = j and jfg = n for some g ∈ Sn (if
jf = n, then this latter case always gets satisfied, otherwise it’s by assumption on
Sn), and fgfg has two distinct fixed points j and n. Thus we have indeed shown
that nf = i is the unique fixed point of f , j < jf for each i < j and jf = i for
each i ≤ j ≤ n.

Nonpermutational transformation semigroups and syntactic complexity 693

i j jf n
g f g

f

Figure 4: If i < j < jf , then fgfg has two distinct fixed points

Lemma 1 has the following corollary:

Theorem 1. The cardinality of any subsemigroup S of Tn consisting only of non-
permutational transformations is at most n((n− 1)!− (n− 3)!).

Proof. As before, let Si stand for {f ∈ S : Fix(f) = i} and without loss of generality
we assume that amongst them Sn is one of the largest ones, moreover <n coincides
with <.

If for each i < j and i′ < j′ with i 6= i′ there is some f ∈ Sn with if = j and
i′f = j′, then by Lemma 1 Si can consist of at most (n− 1)(n− 2) . . . (n− i− 1) =
(n−1)!
(n−i)! elements (we have to choose for each j < i a larger integer and that’s all

since the other elements have to be mapped to i). Also |Sn| ≤ (n − 1)! as well.
Summing up we get an upper bound for these semigroups

n∑
i=1

(n− 1)!

(n− i)!
= (n− 1)!

n−1∑
j=0

1

j!
= be(n− 1)!c,

which comes from the facts that e =
∑∞

j=0
1
j! and (n− 1)!

∑∞
j=n

1
j! < 1.

For the other case, suppose there exist an i < j and an i′ < j′ with i 6= i′ such
that if = j and i′f = j′ do not both hold for any f ∈ Sn. Still, i < if for each
i < n and nf = n, by definition of Sn and the assumption <=<n. The number of

such functions satisfying both if = j and i′f = j′ is (n−1)!
(n−i)(n−j) ≥ (n − 3)!, hence

the size of Sn is upper-bounded by (n − 1)! − (n − 3)!. Since Sn is the largest
amongst the Si’s and S is the disjoint union of them we get the claimed upper
bound n((n− 1)!− (n− 3)!).

We note that the construction for the first case, yielding the upper bound
be(n−1)!c indeed constructs a semigroup B which is exactly the semigroup from [2]
conjectured there to be a candidate for the maximal-size such subsemigroup.

Our proof can be viewed as a support for this conjecture and can be reformalized
as follows: if there exists some i such that many transformations share this fixed
point i, then the size of S is upper-bounded by be(n − 1)!c and S is isomorphic
to a subsemigroup of B. The question is, whether one can construct a larger
semigroup by putting not too many functions sharing a common fixed point. We
also conjecture that B is a good candidate for a maximal-size subsemigroup of Tn
consisting of nonpermutational transformations only.

694 Szabolcs Iván and Judit Nagy-György

4 Definite and generalized definite languages

A language L is definite if there exists a constant k ≥ 0 such that for any x ∈ Σ∗,
y ∈ Σk we have xy ∈ L⇔ y ∈ L and is generalized definite if there exists a constant
k ≥ 0 such that for any x1, x2 ∈ Σk and y ∈ Σ∗ we have x1yx2 ∈ L⇔ x1x2 ∈ L.

These are both subclasses of the star-free languages, i.e. can be built from the
singletons with repeated use of the concatenation, finite union and complementa-
tion operations. It is known that the following decision problem is complete for
PSPACE: given a regular language L with its minimal automaton, is L star-free?
In contrast, the question for these subclasses above are tractable.

Minimal automata of these languages possess a characterization in terms of
forbidden patterns. In our setting, a pattern is an edge-labelled, directed graph
P = (V,E, `), where V is the set of vertices, E ⊆ V 2 is the set of edges, and
` : E → X is a labelling function which assigns to each edge a variable. An
automaton A = (Q,Σ, δ, q0, F) admits a pattern P = (V,E, `) if there exists an
injective mapping f : V → Q and a map h : X → Σ+ such that for each (u, v) ∈ E
labelled x we have f(u) · h(x) = f(v). Otherwise A avoids P .

As an example, consider the pattern Pd on Figure 5.

p q

x x

(a) Pattern Pd.

p q

x x

y

(b) Pattern Pg .

Figure 5: Patterns for definite and generalized definite languages.

4.1 Syntactic complexity of definite languages

A reduced automaton avoids Pd if and only if it recognizes a definite language.
Indeed, a language L is definite iff its syntactic semigroup satisfies the identity
yxω = xω. Now assume L(A) admits Pd with px = p and qx = q with p 6= q and
x ∈ Σ+. If q0x

ω = p, then q0x
ω 6= q0yx

ω for a (nonempty) word y with q0y = q. If
q0x

ω 6= p, then q0x
ω 6= q0yx

ω for a (nonempty) y with q0y = p, thus the identity is
not satisfied. For the other directon, if the transition semigroup of an automaton
A does not satisfy xω = yxω, then p0x

ω
0 6= p0yx

ω
0 for some p0, x0 and y; choosing

p = p0x
ω, q = p0y and x0 = xω witnesses admittance of Pd. (For a more detailed

discussion see e.g. [2].)
Observe that avoiding Pd is equivalent to state that each nonempty word induces

a transformation with at most one fixed point, which is further equivalent to state
that each nonempty word induces a non-permutational transformation: for each
nonempty u, the word u|Q|! fixes each state belonging to a nontrivial component
of the graph of u, hence u also can have only one state in a nontrivial component,

Nonpermutational transformation semigroups and syntactic complexity 695

i.e. u induces a nonpermutational transformation. (Again, see [2] for a different
formulation.1.)

Thus Theorem 1 has the following byproduct:

Corollary 1. The syntactic complexity of the definite languages is at most n((n−
1)!− (n− 3)!).

4.2 Syntactic complexity of generalized definite languages

In this subsection we show that the syntactic complexity of definite and general-
ized definite languages coincide. To this end we study the structure of the minimal
automata of the members of the latter class. In the process we give a (to our
knowledge) new (but not too surprising) characterization of the minimal automata
of generalized definite languages, leading to an NL-completeness result of the cor-
responding decision problem, as well as a low-degree polynomial deterministic al-
gorithm.

Our first observation is the following characterization:

Theorem 2. The following are equivalent for a reduced automaton A:

i) A avoids Pg.

ii) Each nontrivial component of A is a sink, and for each nonempty word u and
sink C of A, the transformation u|C : C → C is non-permutational.

iii) A recognizes a generalized definite language.

Proof. Let A = (Q,Σ, δ, q0, F) be a reduced automaton.
i)→ii). Suppose A avoids Pg. Suppose that u|C is permutational for some sink

C and word u ∈ Σ+. Then there exists a set D ⊆ C with |D| > 1 such that
u induces a permutation on D. Then, x = u|D|! is the identity on D. Choosing
arbitrary distinct states p, q ∈ D and a word y with py = q (such y exists since p
and q are in the same component of A), we get that A admits Pg by the (p, q, x, y)
defined above, a contradiction. Hence, u|C is non-permutational for each sink C
and word u ∈ Σ+.

Now assume there exists a nontrivial component C which is not a sink. Then,
pu = p for some p ∈ C and word u ∈ Σ+. Since C is not a sink, there exists
a sink C ′ 6= C reachable from p (i.e. all of its members are reachable from p).
Since u induces a non-permutational transformation on C ′, x = u|C

′| induces a
constant function on C ′. Let q be the unique state in the image of x|C′ . Since C ′

is reachable from p, there exists some nonempty word y such that py = q. Hence,
px = p, qx = q, py = q and A admits Pg, a contradiction.

ii)→iii). Suppose the condition of ii) holds. We show that L = L(A) is general-
ized definite. By the assumption, q0u belongs to a sink for any u with |u| ≥ |Q|. On

1Since – up to our knowledge – [2] has not been published yet in a peer-reviewed journal or
conference proceedings, we include a proof of this fact. Nevertheless, we do not claim this result
to be ours, by any means.

696 Szabolcs Iván and Judit Nagy-György

the other hand, viewing a sink C as a (reduced) automaton C = (C,Σ, δ|C , p, F ∩C)
with p being an arbitrary state of C we get that the transition semigroup of C con-
sists of nonpermutational transformations only, i.e. L(C) is k-definite for some
k = kC . Hence choosing n to be the maximum of |Q| and the values kC with C
being a sink we get that L is n-generalized definite (since the length-n prefix of u
determines the sink C to which q0u belongs and the length-n suffix of u, once we
know C, determines the unique state in Cu).

iii)→i). Suppose L(A) is generalized definite. Then its syntactic semigroup
satisfies xωyxω = xω (see e.g. [14]).

Now assume AL admits Pg with px = p, qx = q and py = q for the nonempty
words x, y and different states p, q. Then pxω = p and pxωyxω = q, and the identity
is not satisfied, thus L is not generalized definite.

In [2] it has been shown that the class of definite languages has syntactic com-
plexity ≥ be · (n− 1)!c, thus the same lower bound also applies for the larger class
of generalized definite languages.

Theorem 3. The syntactic complexity of the definite and that of the generalized
definite languages coincide.

Proof. It suffices to construct for an arbitrary reduced automaton A = (Q,Σ, δ, q0, F)
recognizing a generalized definite language a reduced automaton B = (Q,∆, δ′, q0, F

′)
for some ∆ recognizing a definite language such that |T (A)| ≤ |T (B)|.

By Theorem 2, if L(A) is generalized definite and A is reduced, then Q can be
partitioned as a disjoint union Q = Q0] Q1] . . .] Qc for some c > 0 such that
each Qi with i ∈ [c] is a sink of A and Q0 is the (possibly empty) set of those states
that belong to a trivial component. Without loss of generality we can assume that
Q = [n] and Q0 = [k] for some n and k, and that for each i ∈ [k] and a ∈ Σ, i < ia.
The latter condition is due to the fact that reachability restricted to the set Q0 of
states in trivial components is a partial ordering of Q0 which can be extended to
a linear ordering. Clearly, if Q0 is nonempty, then by connectedness q0 = 1 has to
hold; otherwise c = 1 and we again may assume q0 = 1. Also, QiΣ ⊆ Qi for each
i ∈ [c], and let |Q1| ≤ |Q2| ≤ . . . ≤ |Qc|.

Then, each transformation f : Q → Q can be uniquely written as the source
tupling [f0, . . . , fc] of some functions fi : Qi → Q with fi : Qi → Qi for 0 < i ≤ c.
For any [f0, . . . , fc] ∈ T = T (A) the following hold: f0(i) > i for each i ∈ [k], and
fj is non-permutational on Qj for each j ∈ [c]. For k = 0, . . . , c, let Tk stand for the
set {fk : f ∈ T } (i.e. the set of functions f |Qk

with f ∈ T). Then, |T | ≤
∏

0≤k≤c
|Tk|.

If |Qc| = 1, then all the sinks of A are singleton sets. Thus there are at most
two sinks, since if C and D are singleton sinks whose members do not differ in
their finality, then their members are not distinguishable, thus C = D since A is
reduced. Such automata recognize reverse definite languages, having a syntactic
semigroup of size at most (n − 1)! by [2], thus in that case B can be chosen to an
arbitrary definite automaton having n state and a syntactic semigroup of size at
least be(n − 1)!c (by the construction in [2], such an automaton exists). Thus we

Nonpermutational transformation semigroups and syntactic complexity 697

may assume that |Qc| > 1. (Note that in that case Qc contains at least one final
and at least one non-final state.)

Let us define the sets T ′k of functions Qi → Q as T ′0 is the set of all elevating
functions from [k] to [n], T ′c = Tc and for each 0 < k < c, T ′k = QQk

c . Since

Tk ⊆ QQk

k and |Qk| ≤ |Qc| for each k ∈ [c], we have |Tk| ≤ |T ′k | for each 0 ≤ k ≤ c.
Thus defining T ′ = {[f0, . . . , fc] : fi ∈ T ′i } it holds that |T | ≤ |T ′|.

We define B as (Q, T ′, δ′, q0, F) with δ′(q, f) = f(q) for each f ∈ T ′. We show
that B is a reduced automaton avoiding Pd, concluding the proof.

First, observe that B has exactly one sink, Qc, and all the other states belong to
trivial components (since by each transition, each member of Q0 gets elevated, and
each member of Qi with 0 < i < c is taken into Qc). Hence if B admits Pd, then
pt = p and qt = q for some distinct pair p, q ∈ Qc of states and t = [t′0, . . . , t

′
c] ∈ T ′.

This is further equivalent to pt′c = p and qt′c = q for some p 6= q in Qc and
t′c ∈ T ′c . By definition of T ′c = Tc, there exists a transformation of the form
t = [t0, . . . , tc−1, t

′
c] ∈ T induced by some word x, thus px = p and qx = q both

hold in A, and since p, q are in the same sink, there also exists a word y with py = q.
Hence A admits Pg, a contradiction.

Second, B is connected. To see this, observe that each state p 6= 1 is reachable
from 1 by any transformation of the form t = [fp, t1, . . . , tc] where fp : [k]→ [n] is
the elevating function with 1fp = p and ifp = n for each i > 1. Of course 1 is also
trivially reachable from itself, thus B is connected.

Also, whenever p 6= q are different states of B, then they are distinguishable
by some word. To see this, we first show this for p, q ∈ Qc. Indeed, since A is
reduced, some transformation t = [t0, . . . , tc] ∈ T separates p and q (exactly one of
pt = ptc and qt = qtc belong to F). Since Tc = T ′c , we get that p and q are also
distinguishable by in B by any transformation of the form t′ = [t′0, . . . , t

′
c−1, tc] ∈ T ′.

Now suppose neither p nor q belong to Qc. Then, since {[t′0, . . . , t′c−1] : t′i ∈ T ′i } =

Q
Q\Qc
c , and |Qc| > 1, there exists some t = [t′0, . . . , t

′
c−1] with pt 6= qt, thus any

transformation of the form [t′0, . . . , t
′
c−1, tc] ∈ T ′ maps p and q to distinct elements

of Qc, which are already known to be distinguishable, thus so are p and q. Finally,

if p ∈ Qc and q /∈ Qc, then let tc ∈ Tc be arbitrary and t′ = [t′0, . . . , tc−1] ∈ QQ\Qc
c

with qt′ 6= ptc. Then [t′, tc] again maps p and q to distinct states of Qc.
Thus B is reduced, concluding the proof: B is a reduced automaton recognizing

a definite language and having a syntactic semigroup T ′ with |T ′| ≥ |T |.

4.3 Complexity issues

Using the characterization given in Theorem 2, we study the complexity of the fol-
lowing decision problem GenDef: given a finite automaton A, is L(A) a generalized
definite language?

Theorem 4. Problem GenDef is NL-complete.

Proof. First we show that GenDef belongs to NL. By [3], minimizing a DFA can
be done in nondeterministic logspace. Thus we can assume that the input is already

698 Szabolcs Iván and Judit Nagy-György

minimized, since the class of (nondeterministic) logspace computable functions is
closed under composition.

Consider the following algorithm:

1. Guess two different states p and q.

2. Let s := p.

3. Guess a letter a ∈ Σ. Let s := sa.

4. If s = q, proceed to Step 5. Otherwise go back to Step 3.

5. Let p′ := p and q′ := q.

6. Guess a letter a ∈ Σ. Let p′ := p′a and q′ = q′a.

7. If p = p′ and q = q′, accept the input. Otherwise go back to Step 6.

The above algorithm checks whether A admits Pg: first it guesses p 6= q, then in
Steps 2–4 it checks whether q is accessible from p, and if so, then in Steps 5–7 it
checks whether there exists a word x ∈ Σ+ with px = p and qx = q. Thus it decides2

the complement of GenDef, in nondeterministic logspace; since NL = coNL, we
get that GenDef ∈ NL as well.

For NL-completeness we recall from [8] that the reachability problem for DAGs
(DAG-Reach) is complete for NL: given a directed acyclic graph G = (V,E)
on V = [n] with (i, j) ∈ E only if i < j, is n accessible from 1? We give a
logspace reduction from DAG-Reach to GenDef as follows. Let G = ([n], E)
be an instance of DAG-Reach. For a vertex i ∈ [n], let N(i) = {j : (i, j) ∈ E}
stand for the set of its neighbours and let d(i) = |N(i)| < n denote the outdegree
of i. When j ∈ [d(i)], then the jth neighbour of i, denoted n(i, j) is simply the jth
element of N(i) (with respect to the usual ordering of integers of course). Note that
for any i ∈ [n] and j ∈ [d(i)] both d(i) and the n(i, j) (if exists) can be computed
in logspace.

We define the automaton A = ([n+ 1], [n], δ, 1, {n+ 1}) where

δ(i, j) =

 n+ 1 if (i = n+ 1) or (j = n) or (i < n and d(i) < j);
1 if i = n and j < n;
n(i, j) otherwise.

Note that A is indeed an automaton, i.e. δ(i, j) is well-defined for each i, j.
We claim that A admits Pg if and only if n is reachable from 1 in G. Observe

that the underlying graph of A is G, with a new edge (n, 1) and with a new vertex
n + 1, which is a neighbour of each vertex. Hence, {n + 1} is a sink of A which
is reachable from all other states. Thus A admits Pg if and only if there exists

2Note that in this form, the algorithm can enter an infinite loop which fits into the definition
of nondeterministic logspace. Introducing a counter and allowing at most n steps in the first cycle
and at most n2 in the second we get a nondeterministic algorithm using logspace and polytime,
as usual.

Nonpermutational transformation semigroups and syntactic complexity 699

a nontrivial component of A which is different from {n + 1}. Since in G there
are no cycles, such component exists if and only if the addition of the edge (n, 1)
introduces a cycle, which happens exactly in the case when n is reachable from 1.
Note that it is exactly the case when 1x = 1 for some word x ∈ Σ+.

What remains is to show that the reduced form B of A admits Pg if and only
if A does. First, both 1 and n + 1 are in the connected part A′ of A, and are
distinguishable by the empty word (since n + 1 is final and 1 is not). Thus, if A
admits Pg with 1x = 1 and (n + 1)x = n + 1 for some x ∈ Σ+, then B admits Pg

with h(1)x = h(1) and h(n+1)x = h(n+1) (with h being the homomorphism from
the connected part of A onto its reduced form). For the other direction, assume
h(p)x0 = h(p) for some state p 6= n+ 1 (note that since n+ 1 is the only final state,
p 6= n + 1 if and only if h(p) 6= h(n + 1)). Let us define the sequence p0, p1, . . .
of states of A as p0 = p, pt+1 = ptx0. Then, for each i ≥ 0, h(pi) = h(p), thus
pi ∈ [n]. Thus, there exist indices 0 ≤ i < j with pi = pj , yielding pix

j−i
0 = pi,

thus A admits Pg with p = pi, q = n+ 1, x = xj−i0 and y = n.
Hence, the above construction is indeed a logspace reduction from DAG-Reach

to the complement of GenDef, showing NL-hardness of the latter; applying NL =
coNL again, we get NL-hardness of GenDef itself.

It is worth observing that the same construction also shows NL-hardness (thus
completeness) of the problem whether the input automaton accepts a definite lan-
guage.

Thus, the complexity of the problem is characterized from the theoretic point of
view. However, nondeterministic algorithms are not that useful in practice. Since
NL ⊆ P, the problem is solvable in polynomial time – now we give an efficient
(quadratic) deterministic decision algorithm:

1. Compute A′ = (Q,Σ, δ, q0, F), the reduced form of the input automaton A.

2. Compute Γ(A′), the component graph of A′.

3. If there exists a nontrivial, non-sink component, reject the input.

4. Compute B = A′ × A′ and Γ(B).

5. Check whether there exists a state (p, q) of B in a nontrivial component (of
B) for some p 6= q with p being in the same sink as q in A. If so, reject the
input; otherwise accept it.

The correctness of the algorithm is straightforward by Theorem 2: after mini-
mization (which takes O(n log n) time) one computes the component graph of the
reduced automaton (taking linear time) and checks whether there exists a nontriv-
ial component which is not a sink (taking linear time again, since we already have
the component graph). If so, then the answer is NO. Otherwise one has to check
whether there is a (sink) component C and a word x ∈ Σ+ such that fx|C has at
least two different fixed points. Now it is equivalent to ask whether there is a state
(p, q) in A′ × A′ with p and q being in the same component and a word x ∈ Σ+

700 Szabolcs Iván and Judit Nagy-György

with (p, q)x = (p, q). This is further equivalent to ask whether there is a (p, q)
with p, q being in the same sink such that (p, q) is in a nontrivial component of B.
Computing B and its components takes O(n2) time, and (since we still have the
component graph of A) checking this condition takes constant time for each state
(p, q) of B, the algorithm consumes a total of O(n2) time.

Hence we have a low-degree polynomial-time upper bound:

Theorem 5. Problem GenDef can be solved in O(n2) deterministic time in the
RAM model of computation.

5 Conclusion, further directions

The forbidden pattern characterization of generalized definite languages we gave is
not surprising, based on the identities of the pseudovariety of (syntactic) semigroups
corresponding to this variety of languages. Still, using this characterization one can
derive efficient algorithms for checking whether a given automaton recognizes such
a language. Though we could not compute an exact function for the syntactic
complexity, we still managed to show that these languages are not “more complex”
than definite languages under this metric. Also, we gave a new upper bound for
that.

The exact syntactic complexity of definite languages is still open, as well as
for other language classes higher in the dot-depth hierarchy – e.g. the locally
(threshold) testable and the star-free languages.

References

[1] R. S. Cohen, J. Brzozowski. Dot-Depth of Star-Free Events. Journal of Com-
puter and System Sciences 5(1), 1971, 1–16.

[2] J. Brzozowski, D. Liu. Syntactic Complexity of Finite/Cofinite, Definite, and
Reverse Definite Languages. http://arxiv.org/abs/1203.2873

[3] S. Cho, D. T. Huynh. The parallel complexity of finite-state automata prob-
lems. Inform. Comput. 97, 122, 1992.

[4] M. Čirič, B. Imreh, M. Steinby. Subdirectly irreducible definite, reverse definite
and generalized definite automata. Publ. Electrotechn. Fak. Ser. Mat., 10,
1999, 69–79.

[5] F. Gécseg, B. Imreh. On isomorphic representations of generalized definite
automata. Acta Cybernetica 15, 2001, 33–44.

[6] A. Ginzburg. About some properties of definite, reverse-definite and related
automata. IEEE Trans. Electronic Computers EC-15, 1966, 809–810.

[7] M. Holzer, B. König. On deterministic finite automata and syntactic monoid
size. Theoretical Computer Science 327(3), 319–347, 2004.

Nonpermutational transformation semigroups and syntactic complexity 701

[8] Neil D. Jones, Y. Edmund Lien and William T. Laaser: New problems com-
plete for nondeterministic log space. THEORY OF COMPUTING SYSTEMS
Volume 10, Number 1 (1976), 1-17.

[9] O. Kĺıma, L. Polák. Alternative Automata Characterization of Piecewise
Testable Languages. Accepted to DLT 2013.

[10] B. Krawetz, J. Lawrence, J. Shallit. State Complexity and the Monoid of
Transformations of a Finite Set. Proc. of Implementation and Application of
Automata, LNCS 3317, 2005, 213–224.

[11] B. Li. Syntactic Complexities of Nine Subclasses of Regular Languages. Mas-
ter’s Thesis.

[12] D. Perrin. Sur certains semigroupes syntactiques. Séminaires de l’IRIA,
Logiques et Automates, Paris, 1971, 169–177.

[13] T. Petkovič, M. Čirič, S. Bogdanovič. Decomposition of automata and transi-
tion semigroups. Acta Cybernetica 13, 1998, 385–403.

[14] J-É. Pin. Syntactic semigroups. Chapter 10 in Handbook of Formal Languages,
Vol. I, G. Rozenberg et A. Salomaa (eds.), Springer Verlag, 1997, 679–746.

[15] M. Steinby. On definite automata and related systems. Ann. Acad. Sci. Fenn.,
Ser. A I 444, 1969.

[16] J. Stern. Complexity of some problems from the theory of automata. Informa-
tion and Control 66, 1985, 163–176.

[17] A. N. Trahtman. Piecewise and local threshold testability of DFA. Proc. of
FCT 2001, LNCS 2038 (2001), 347–358.

Received 19th July 2014

