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Abstract—Gossip learning is a form of decentralized stochas-
tic gradient descent search that is implemented through ran-
domized walks within a network. Our goal is to enable one
to deploy gossip learning in open distributed systems, for
example, in overlay networks formed by mobile devices, where
different data mining tasks could be launched by many users.
Among the many problems this long term goal raises, here
we focus on the problem of running many random walks
simultaneously. This is a challenging problem in itself in a
decentralized setting because all the walks have to be persistent
(they have to perform many hops) and agile (they need to
move quickly). At the same time, the solution must take
hard bandwidth constraints into account. Here, we propose
a protocol to manage O(n) random walks in a network of
n nodes. Although our motivation is gossip learning, this
protocol may be viewed as a general middleware service for
the management of walks over networks. A key element of
our protocol is a multi-level restarting mechanism designed to
prevent the failure of random walks due to node churn, while
respecting a set of bandwidth constraints. Here, we simulate
our solution using a trace collected from real smartphones.
We demonstrate that the random walks are kept alive and
are run at close to optimal speed under the given bandwidth
constraints.

Keywords-decentralized data mining, gossip, churn, random
walks, mobile phone networks

I. INTRODUCTION

Gossip learning [1] is a decentralized approach to machine
learning that is based on stochastic gradient descent search.
Here, the model that is being fit on the data performs a
uniform random walk over the network and it is updated
before each step using the local data. Recently, the same idea
has been applied to matrix factorization as well that is useful,
for example, in implementing decentralized recommender
systems [2].

Our long-term research goal is to allow gossip learning to
be deployed in a multi-user decentralized environment where
users or software agents can launch learning tasks over the
collection of the local data of the participants of the network.
We are interested in multi-user environments as our goal is
to create a fully open collaborative environment where those
who provide data can also enjoy the benefit of mining the
collective data of the community. The notion of decentral-
ization is also important, as has been recognized by other
researchers as well. One reason is that distributed computing
allows better scalability compared to cloud-based solutions
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by exploiting local resources and networks, as proposed e.g.
by Cisco in its ongoing fog computing initiative [3]. Another
reason is the increasing need for privacy as the personal
data collected and stored by ubiquitous personal computing
devices such as smart meters, sensors and mobile devices is
becoming richer and richer [4].

Multi-user gossip learning raises many research problems.
Among those, here we focus on the management of multiple
random walks. As we describe more precisely later, we
assume that in an overlay network many random walks are
run, each representing a learning task. Each task might be
owned by a separate user. Our problem here is to ensure
that all the walks keep progressing in spite of benign faults
caused by nodes joining and leaving (that is, node churn).
Also, we want all the walks to progress quickly, that is,
without delay, taking the bandwidth into account that is
assigned to the nodes.

It should be mentioned here that—although our moti-
vation is gossip learning for multi-user environments—the
random walk management middleware service is potentially
useful in a more general context as well as random walks
have been applied to many different functions other than
machine learning. In early peer-to-peer systems they were
proposed to implement search [5], and since then random
walk techniques have been applied to various functions that
include a membership service [6]–[8], sampling [9], and for
computing various queries including community detection
in large networks [10] and network size [6], just to name a
few.

The challenge lies in the decentralized nature of the
system. Our solution is based on a multi-level protocol in
which we have three “lines of defense” that are similar to
competence levels in a hierarchical organization. Problem
solving is first attempted at the lowest level and in the case
of failure the problem is escalated to the next level. The first
two levels are completely decentralized. Ideally, these two
decentralized mechanisms should handle the vast majority
of faults and the third level—which is implemented by the
central control of the owner—should be reached only very
rarely. The motivation behind this design philosophy is that
we wish to offer a conceptually simple and cheap solution
that avoids accessing central resources almost all the time,
as opposed to a complex and/or expensive protocol that
provably works without any central control all the time.

Our contribution is twofold. First, we propose a multi-
level decentralized protocol to run O(n) random walks in a
network of n nodes that can tolerate benign failures. Second,
we demonstrate through simulation that the protocol indeed
protects the random walks and that the walks progress at
a near-optimal speed. We base our simulations on a real



trace of smart phones we collected [11]. Although we focus
on collaborative mobile platforms [12], multi-user gossip
learning applications may be found in smart metering [13]
and over Internet of Things platforms [14] as well.

II. SYSTEM MODEL

We model our system as a large set of nodes that commu-
nicate via message passing. We assume a reliable transfer
protocol. This implies that messages are not dropped, so
communication fails only if the source or target node fails
before transferring the full message. At every point in time
each node has a set of neighbors. The neighbor set can
change over time, but nodes can send messages only to
their current neighbors. We will assume here that the set
of neighbors is a uniform random sample from the network
(see, for example, [8]). Nodes can leave the network or fail
at any time. In our simulations we will assume that when
a node leaves the network it retains a subset of its state
until it joins the network again, but this is not a critical
assumption. Messages can be delayed up to a finite delay.
We do not assume synchronized time.

III. THE MULTIPLE RANDOM WALK SERVICE

Let us first define random walks at the level of abstraction
that is required for the description of our algorithms. A
random walk may be viewed as a mobile agent with a state
(consisting of payload and metadata) that jumps from node
to node at random. The nature of random neighbor selection
is not critical here, but it does affect load balancing, so here
we assume a random node is picked from the network with
the help of a suitable peer sampling service. The payload
of the walk is application dependent. In gossip learning, it
represents a machine learning model that is updated at each
node based on local information.

The metadata of the random walk includes a unique walk
ID, a restart ID unique within the scope of the same walk ID,
and a step count that counts the hops completed by the walk.
When the node responsible for the current hop fails before
successfully completing the hop, the walk will be restarted
using an earlier state that is (hopefully) still available in
some previously visited nodes. The restarted walk will have
the same walk ID, but it will get a new restart ID.

In the systems we envision there will be n nodes and
O(n) random walks each working on different tasks. The
problem we wish to solve is to provide a fault tolerant
implementation that is able to restart the failed walks without
creating redundant copies.

A. Bird’s Eye View

In a nutshell, our solution is made up of three conceptual
levels. At the first (lowest) level a local mechanism is
implemented. Here, after completing a random walk hop,
every node monitors the success of the next hop. In the
case of a failure, the monitoring node will restart the walk.
This mechanism is local because the monitoring node retains
a copy of the payload that it has just transmitted to the
monitored node.

The idea is that in the vast majority of failures this local
mechanism will fix the problem, but when it does not, the
problem gets escalated to level two. This happens when
the monitoring node fails before it can detect the failure

of the walk. The node performing the current hop therefore
monitors the monitoring node (called the supervisor) and
invites a new supervisor if the current supervisor fails. This
new supervisor, however, might not store the payload, or
it might store only an outdated copy, so at level two a
more expensive mechanism has to be used. Namely, when
detecting a failure, the supervisor broadcasts the restarting
request that will eventually reach those nodes that have fresh
versions of the payload. These nodes then attempt to restart
the walk in a sequential order determined by how old their
copy of the payload is. After a successful restart another
broadcast is sent about the success, which prevents further
attempts at restarting. A simple mechanisms is also in place
to stop most of the redundant restarted walks.

The third (and final) level is implemented by the central
control carried out by the owner of the walk. The random
walk can report its state to the owner regularly (if the owner
is reachable), which allows for appropriate interventions. In
our simulations this happens extremely rarely, as we will
demonstrate later on.

As can be seen from this short summary, we opt for a best
effort multi-level mechanism without formal guarantees that
nevertheless attempts to escalate as little work as possible
to the increasingly expensive upper levels. We believe that
in the complex systems we focus on this is a preferable
approach that allows us to carry out most of the control
tasks in a decentralized way while keeping the system
conceptually simple and manageable.

B. Detailed Description of the Protocol

The pseudo code of the protocol run by all the nodes
can be seen in Algorithm 1. As for the local state of the
node, sendQueue is a FIFO queue that keeps sending its
next entry to a random node until the queue is not empty.
If the recipient node fails before completing the transaction,
the queue selects another random node and tries sending
the current entry again until the transmission succeeds. This
queue also informs the node about each successful transmis-
sion by invoking the method onTransmissionComplete(). In
this method we simply cancel the monitoring (supervision)
of this completed hop and start to monitor the next hop. We
also store the walk in storageQueue, which is also a FIFO
queue with a fixed storage capacity. When it is full, the next
entry is removed.

When a random walk arrives successfully, onRan-
domWalkArrival() is invoked where the node records which
node its level one supervisor is, then the payload is updated
and the next hop is scheduled.

Failure detection is implemented via the event handler
onConnectionTimeout() that is invoked when a neighbor that
the node is currently in contact with fails. Here, if a moni-
tored node fails then in the case of level one monitoring (the
node was the previous sender) the node simply schedules the
restarting of the walk while also assigning a supervisor to
itself. In the case of level two monitoring (the node does not
have the (fresh) payload) the node schedules for broadcast
a new request for restarting the walk. Finally, if the failing
node was the node’s supervisor then a new one is selected.
Note that we do not detail the algorithm for finding (or
replacing) supervisors here; it involves contacting live nodes



Algorithm 1 Multiple Random Walk Protocol
1: δ: ⊲ estimated time for full broadcast
2: ∆: ⊲ gossip round length
3: sendQueue: ⊲ queue where walks to be forwarded wait
4: storageQueue: ⊲ queue where we store recent random walks
5: rwEvents: ⊲ fresh events broadcast to manage random walks

6: loop ⊲ push-pull gossip protocol to broadcast walk events
7: wait(∆)
8: p← selectPeer()
9: rwEvents.cleanup()

10: send rwEvents to p
11: send pull request to p

12: procedure ONRECEIVERWEVENTS(rwEvents’)
13: for event in rwEvents’ \ rwEvents do ⊲ examine the new events
14: if rwEvents.isObsolete(event) then
15: continue ⊲ jump to next event
16: if event type is RestartRequest then
17: if storageQueue.contains(event.rw) then
18: restartThreadsFactory.start(event)
19: else if event type is Restarted then
20: restartThreadsFactory.stop(event)
21: if rwEevents.containsConflict(event) then
22: event ← new MultipleRestarts(rwEvents,event)
23: if event type is MultipleRestarts then
24: restartThreadsFactory.stop(event)
25: for rw in sendQueue do
26: if conflict(rw,event.rw) then ⊲ kill redundant walk
27: sendQueue.remove(rw)
28: p← getSupervisor(rw) ⊲ either level 1 or 2
29: send cancelSupervision(rw) to p
30: rwEvents.add(event)
31: rwEvents.cleanup()

32: procedure RESTARTTHREADSFACTORY.START(event)
33: ⊲ this should be run in a new thread, presentation is simplified
34: rw ← storageQueue.get(event.rw)
35: window ← event.rw.steps − rw.steps
36: restartWindowStart ← window·δ+ event.creationTime()
37: restartWindowEnd ← (window+1)·δ+ event.creationTime()
38: wait while currentTime() < restartWindowStart
39: if currentTime() < restartWindowEnd then
40: sendQueue.add(rw) ⊲ level 2 restart
41: supervisorAtLevel2.add(newSupervisor(rw))
42: rwEvents.add(new Restarted(rw))

43: procedure ONCONNECTIONTIMEOUT(p)
44: for rw in getSupervisedRWsAtLevel1(p) do
45: sendQueue.add(rw) ⊲ level 1 restart
46: supervisorAtLevel2.add(newSupervisor(rw))
47: for rw in getSupervisedRWsAtLevel2(p) do
48: rwEvents.add(new RestartRequest(rw))
49: if isSupervisor(p) then ⊲ either level 1 or 2
50: supervisorAtLevel2.add(replaceSupervisor(p))

51: procedure ONRANDOMWALKARRIVAL(rw,p)
52: supervisorAtLevel1.add(rw, p)
53: update(rw)
54: sendQueue.add(rw)

55: procedure ONTRANSMISSIONCOMPLETE(rw,p)
56: q ← getSupervisor(rw) ⊲ either level 1 or 2
57: send cancelSupervision(rw) to q
58: supervisedAtLevel1.add(rw, p)
59: storageQueue.add(rw)

from the network and negotiating with them. Note also that
the failing node might have been the supervisor for more
than one walk at both level one and two, so all instances
need to be replaced.

Let us now move on to the discussion of the second
level where restarting is achieved through various broadcast
messages. To implement the broadcast primitive, each node
runs a basic push-pull gossip broadcast protocol in an active
loop with round length ∆. The local set rwEvents contains
those messages that are currently actively broadcast. Each
message is gossiped up to a given maximal number of hops
that is set such that all the nodes receive the broadcast
with very high probability. The method rwEvents.cleanup()
removes those messages that have reached this limit.

There are three kinds of gossip messages, namely
RestartRequest, Restarted and MultipleRestarts. All of these
messages refer to the failure of a given random walk
instance, identified by the walk ID and the restart ID. For
this reason, from now on we will assume that the messages
mentioned in the discussion belong to the same failure event,
unless otherwise stated.

A RestartRequest is generated by a level two supervisor
when it detects that a walk has failed. This request has a
reference to the walk ID and the restart ID that failed. A
Restarted message is generated by a node when it decides
to restart a walk based on a RestartRequest. Apart from the
walk ID and the old restart ID, this event also refers to
the restart ID of the new walk. A MultipleRestarts message
is generated by a node that receives multiple Restarted
messages that belong to independent restarts of the same
walk following the same failure event. Once again, this event
refers to the walk ID and the old restart ID, and in addition
it contains the new restart ID that is picked to be kept alive.

Method onReceiveRWEvents() processes the incoming
broadcast messages. There, only the new messages are
processed that are not already included in the local set. First
it is tested whether a given message is obsolete or not. This
is defined based on a natural dominance relation over the
messages. Restarted messages dominate RestartRequests and
MultipleRestarts messages dominate the other two types.

In addition, within a given type, an older RestartRequest
(with the larger step count) dominates a younger one. Note
that normally there should be only one RestartRequest being
broadcast but due to the unreliability of the applied failure
detector we could in theory have more than one active
supervisor for the same walk so more requests may get
generated. Messages of type Restarted do not dominate each
other, instead, multiple Restarted messages indicate a failure
(redundant restarts). In this case a MultipleRestarts message
is generated that contains information about which new walk
to keep alive: this will be the one with the minimal restart ID.
MultipleRestarts messages also have a dominance relation:
the message with the smaller restart ID to keep alive wins.
Note that due to the timing variance and unreliability of the
broadcast primitive, different conflicts might be picked up
by different nodes so we may indeed have various different
MultipleRestarts messages.

The non-dominated new messages are then processed. In
the case of a RestartRequest event if the node has a copy of
the payload then a restart timer is started in a separate timer



thread. This thread calculates a restart window in which this
node is allowed to restart the walk. The window depends
on the age of the local copy of the payload. This way, the
different copies of the payload in the network attempt a
restart in a sequential order with a high probability, avoiding
redundant copies. The window is relative to the first creation
of the RestartRequest. Knowing the creation time of the
request does not necessarily require synchronized clocks,
as an approximation is sufficient that can be computed via
summing the approximate hop-times during broadcast.

When a Restarted event is received, we stop any restart
timers for this walk and check for conflicting (that is, redun-
dant) restarts. Should there be any such redundant restarts,
a new MultipleRestarts event is placed in the broadcast
message set.

Finally, when a MultipleRestarts event arrives, the node
stops any related restart timers and it also removes all
the copies of the redundant walk while also canceling any
supervisors for these walks. The sendQueue also checks
rwEvents before sending the next message for possible
conflicts (not indicated in the pseudo code).

The new event is then added to rwEvents that is also
cleaned up, which means that the dominated events and the
old events are removed.

C. Additional Details and Remarks

Let us now discuss a number of issues that were left out of
the discussion above. For example, the behavior of re-joining
nodes needs to be considered. In our approach we assume
that nodes that leave the network (detected as failed) will
keep their storageQueue when joining again, but they empty
their rwEvents cache. In addition, they move the content of
their old sendQueue to storageQueue. This prevents outdated
messages from arising as a result of re-joining.

It is also worth mentioning that the broadcast messages
are temporary, that is, we delete them immediately after
their maximal hop-count is reached. This means that without
failure events no broadcasting is going on as all the caches
are empty.

Let us now clarify the handling of the different restart IDs
in the message processing. When determining the dominance
relation and the conflicts described previously, we compare
only those messages where the walk ID and the old restart
ID are the same. In other words, only those messages are
compared that belong to the same failure event. This means
that, for example, it is possible that we have two Restarted
messages with the same walk ID but with different old restart
IDs, and in this case there will be no conflict. The reason is
that in principle this could be a situation when the walk
failed, was restarted, then failed again and was restarted
again within a short time.

However, when removing conflicting walks in response to
a MultipleRestarts message, we remove all the walks with
the same walk ID and different restart ID irrespective of
the previous (old) restart ID of the removed walk. For the
above reasons, there is a tiny probability that some walks
that should not be removed are in fact removed.

It is possible to handle these temporal ordering issues,
but we opted for simplicity and we follow our multi-level
principle, namely that problems resulting from such obscure

corner cases are escalated to the next level of the system.
We justify this choice in our simulation experiments.

D. Best Effort Design

We stress again that the first two levels of our algorithm
may fail in various ways, many of which we have not
discussed here. For example, because of the inevitable delay
between a failure event and its detection, it is possible
that no supervisor is present for a short interval, during
which the node might fail, resulting in a failed random
walk. Another example is that it is theoretically possible
that no node receives the restart request that has a copy of
the payload of the given walk. This could be due to the
unreliability of the broadcast or to the fact that most copies
were deleted from storage. It is also theoretically possible
that the walk will stay alive when (mistakenly) detected
as failed due to the unreliability of the failure detector,
which will result in undetected redundant walks. It is also
possible that a restart attempt at level two eventually fails
after emitting a Restarted message (which is sent before and
not after the transfer completes) and although this will be
detected by the supervisor of the restarter node, this can still
result in incorrectly detected multiple restarts with a very
small probability. Temporary network partitioning is also a
problem if the supervisor and the supervised nodes are in
different partitions. The list goes on.

Obviously, one could set the goal of designing a solution
with provable properties under carefully selected assump-
tions. In a complex problem like ours, this approach would
almost certainly lead to a protocol that is very hard to
implement, understand and manage.

Instead, we propose a multi-level protocol with each level
doing its best and escalating any unsolved problems to the
next level. The function of the levels is rather clear and all
of the levels allow for failures as these will be handled by
the next level. Thus, the design process of the algorithms
of each level is not an “all or nothing” task but rather
a multi-objective optimization process where we minimize
the number of failures while maximizing the simplicity and
manageability of the protocol. As for research methodology,
our main tool is simulation where we demonstrate the cost
and reliability of the system as a whole under realistic
settings.

The design goal is to ensure that our final fallback
mechanism (level three) has a minimal load. At this level, the
owner of the walk (and the associated task) has to provide
only minimal resources like a mobile phone for 10 minutes
each day, or a very limited public cloud service. During,
for example, one short daily visit by the user, the walks of
the user (if any) report back to the user who can remove or
restart walks as needed. Thus, the system as a whole does
not require expensive infrastructure and can remain open and
free for all the potential users.

Note that this approach is in line with several related stud-
ies in the area of P2P-assisted systems that use unreliable
distributed protocols only as a first level and a central service
provides the guarantees for the reliability of the application
(for example, [15], [16]). Here our goal is slightly different
in that we want to reduce the contribution of the central final
level to an absolute minimum, and also in that we organize
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Figure 1. Proportion of users online, and proportion of users that have
been online, as a function of time. The bars indicate the proportion of the
simulated users that log in and log out (shown as a negative proportion),
respectively, in the given period.

the distributed protocol itself into hierarchical levels in a
similar manner.

IV. EXPERIMENTS

In order to experimentally analyze our protocol, we sim-
ulate node churn based on a real trace of smartphone user
behavior. To perform the simulations, we used PeerSim [17].

A. Trace Properties

The trace we used was collected by a locally developed
openly available smartphone app called STUNner, as de-
scribed previously [11]. In a nutshell, the app monitors
and collects information about charging status, battery level,
bandwidth, and NAT type.

We have traces of varying lengths taken from 1191 differ-
ent users. We divided these traces into 2-day segments (with
a one-day overlap), resulting in 40,658 segments altogether.
With the help of these segments, we are able to simulate
a virtual period of up to two days by assigning a different
segment to each simulated node. Here, we simulated our
protocol for one day, using the first half of each segment.
When we needed more users than segments, we re-sampled
the segments to inflate the number of users artificially.

The observed churn pattern is illustrated in Figure 1
based on all the two-day periods we identified. Although
our sample contains users from all over the world, they
are mostly from Europe, and some are from the USA. The
indicated time is GMT, thus we did not convert times to
local times. We treated those users as offline who had a
bandwidth of less than 1 Mbit/s.

Note that we can simulate the case where a participating
phone is required to have at least a certain battery level.
From the point of view of churn, though, the worst case
is when any battery levels are allowed to join, because
this results in a more dynamic scenario. However, the first
10 seconds of each online session (or the entire session
if it is shorter) are considered offline to remove extremely
short online sessions. This technique can also be explicitly
implemented as part of our protocol: a node should wait 10
seconds before joining the network.

B. Experimental Setup

All our experiments were run on top of the churn trace
described above. In each experiment the algorithm param-
eters listed in Table I were fixed. Note that δ (the length

Table I
FIXED PARAMETERS

∆ 100 ms

δ 2000 ms

storageQueue size 10 entries of maximal size

max gossip hop count 20 steps

of the restarting window) is calculated as 20∆, which is the
longest time a given broadcast message is expected to spend
in the network. This increases the possibility that restarting
windows are indeed sequential and non-overlapping. The
maximum allowable amount of data in the storage queue is
set so that the queue could store ten entries of the maximal
size. Thus, in scenarios where the payload size is variable,
the queue might store more than ten entries.

In our experiments we varied three main parameters of the
application environment. These were the network size, the
number of random walks to maintain, and the distribution of
the size of the payload of the random walks. As for network
size, we experimented with n = 1000 and n = 100, 000.

Regarding the number of random walks, we designed
three scenarios with an exponentially increasing number of
random walks. To determine how many walks to start, we
first examined the churn trace and found that, on average,
54% of the nodes are online. Based on this, as a baseline
setup we started 0.54n random walks in expectation. As for
the implementation, each node was assigned a walk initially
with a probability of 0.54. We also ran experiments with ten
times more and ten times fewer walks than this baseline. The
exact number of random walks can be found in Table II.

The payload size was defined in terms of transmission
time assuming a fixed bandwidth limit at the nodes. We
defined a small and a large payload with a transmission time
of 1000 ms, and 10,000 ms, respectively. We ran simulations
with only small and only large payloads, as well as with a
mixture of payloads where each random walk was assigned
a transmission time at random with a uniform distribution
over the interval [1000 ms,10,000 ms].

The overlay network was implemented by independently
assigning 50 randomly selected neighbors to each node.
This setting was used for all the network sizes. We assume
that each node maintains an active TCP connection with its
neighbors as suggested in [8]. If a node fails, its neighbors
will detect this only with a one second delay. The neighbor
set is constant in our simulations; that is, when a neighbor
fails it remains on the list and it is reconnected when it
comes back online. The size of our neighbor set was large
enough for the overlay network to remain connected.

We should also mention that we applied a short warm-
up period before the simulation that is not included in our
reported statistics. We did this to model the realistic usage
scenario where new random walks are added to the system
by their owners making sure that the walk completes at least
a few hops so that there are copies in the network to restart
from. For this reason, those nodes that were assigned a walk
to start were kept online for five minutes and we started the
trace-based simulation only after this period. In addition,
to avoid an immediate synchronized spike in failures (a



simulation artifact), we made sure the nodes that started a
walk were assigned a trace with an initial online period.

C. Results

Let us first take a look at the statistics of the various
experimental scenarios at the end of the simulated day in
Table II. We can see that in all the cases there is a large
number of restarts, more than ten times as many as the
number of walks. The most important result is that the vast
majority of these restarts happen at level one.

It is clear that the number of level two restarts depends
mostly on the size of the payload of the walks. With a
large payload (and long transmission time) there is a larger
probability that the level one supervisor fails before the
transmission gets completed, thus triggering a level two
process.

Also, we get a disproportionate increase in the number
of level two restarts when we increase the number of walks
beyond the number of online nodes. In that scenario, apart
from the fact that there are more walks and thus more
restarts, the walks spend a lot of time in the sending queues
of the nodes, thus the expected time for the supervision
becomes an order of magnitude longer. This in turn increases
the probability of the failure of the level one supervisor.

As for level three events, we did not observe any instances
of redundant walks, and only around one percent of the
walks got lost.

A very interesting issue is the communication cost of
the protocol. From the table, we can see that the maximal
size of the broadcast table is extremely small; it is in fact
negligible when considering that the entries in the table are
also very small. Note that the maximal value is indicated,
but in fact the broadcast tables are empty most of the time.
This indicates that the overhead of the protocol is small,
so the communication costs are dominated by the random
walks.

Let us now examine the effect of the various levels. When
omitting level two, not surprisingly, slightly fewer restarts
happen at level one, since those walks that get lost will not
need further restarts. When there is no restarting mechanism
in place, we lose all the walks.

Finally, let us note that our experiment with the large
network size of n = 100, 000 also produces very few
level three failures and the broadcast cost is as low as in
the smaller networks. This confirms the scalability of the
approach.

Table II does not illustrate the dynamic properties of the
statistics, and the speed of the random walks cannot be seen
either, which is a key property we wish to maximize. Thus,
we include plots as well that contain the number of hops
the random walks complete as well as the number of walks
that are alive as a function of time.

Figures 2, 3 and 4 were obtained using the three different
payload size distributions we experimented with, and each
figure contains three plots that correspond to the three
different numbers of random walks.

The plots illustrate how quickly the random walks die out
without any restart mechanism. As we saw in Table II, here
we can also observe that relying only on level one restarts
(and not using level two) more walks get lost, although, as
we saw previously, the difference is not large.
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Figure 2. Experimental results with n = 1000, and small payload
(1000 ms transmission time) with a varying number of random walks.

The plots also contain statistics about the number of hops
(steps) the random walks completed by the given point
in time in the form of average, minimum and maximum
in the homogeneous payload scenarios and in the form
of samples from individual walks in the mixed scenario.
The optimal speed is also indicated. When calculating the
optimal speed, we took the number of walks into account.
That is, when there are ten walks on average for each online
node, the optimal speed gets divided by ten to account for the
fixed bandwidth limit we assume when transmitting random
walks. Otherwise, the optimal speed is given by always
transmitting the walk without any delay at the maximum
bandwith.

Clearly, in the case of the scenarios with a small number
of models we achieve nearly optimal random walk speed
in the homogeneous payload size scenarios. In the case of
mixed payload sizes, the speed of the walks with a large
payload is close to optimal, but the walks with a small
payload suffer delays due to queuing behind large payloads.
Note that, although for all the walks the average queuing
time for one hop is the same irrespective of the payload size,
for walks with a small payload there are a larger number
of hops on average so these walks spend more time in the
queues in total.

In the scenario where the number of walks is the same as
that of the average online nodes, walks slow down somewhat
even in the homogeneous scenarios. This is because in this



Table II

Scenarios Multiple Random Walk Protocol without level 2 restarts without restarts
network

size
transmission

time (s)
# random

walks
# restarts
at level 1

# restarts
at level 2

lost random
walks

max. # events
broadcast

# restarts
at level 1

lost random
walks

lost random
walks

40 672 0 0.00% (0) 0 672 0.00% (0) 100%

1 553 9888 4 0.72% (4) 1 9922 1.44% (8) 100%

5440 93620 253 0.62% (34) 3 90818 5.88% (320) 100%

40 661 3 2.50% (1) 1 643 7.50% (3) 100%

103 rand(1,10) 553 9512 20 1.98% (11) 1 9465 6.69% (37) 100%

5440 75650 1083 0.58% (32) 7 67965 16.04% (873) 100%

40 654 1 0.00% (0) 1 705 7.50% (3) 100%

10 553 9011 46 1.44% (8) 1 8862 7.23% (40) 100%

5440 79488 2055 0.75% (41) 7 65236 27.37% (1489) 100%

1 54383 923938 379 0.82% (449) 3 922568 1.43% (780) 100%

105 rand(1,10) 54383 907904 2269 0.71% (391) 4 889612 4.85% (2642) 100%

10 54383 887857 4183 0.74% (407) 5 858649 7.83% (4262) 100%
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Figure 3. Experimental results with n = 1000, and mixed payload
(between 1000 ms and 10000 ms transmission time) with a varying number
of random walks.
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Figure 4. Experimental results with n = 1000, and large payload
(10000 ms transmission time) with a varying number of random walks.



 0

 100

 200

 300

 400

 500

 0  2  4  6  8  10  12  14

N
o

d
e

Models in queue

n/10
n

10n

Figure 5. The histograms of the sendQueue sizes in the three scenarios
with 1000 ms payload transmisson time. The notations n/10, n and 10n
represent our three settings for the number of random walks.

case the sending queue will often contain one or more walks
to queue behind, which causes delays. This is illustrated well
by the histograms shown in Figure 5 where the variance of
the queue size can also be seen.

Interestingly, in the case of the largest number of walks
the speed is close to optimal again. This is because here the
queuing time is the most important factor that determines the
speed and in the queues the waiting time can average out due
to the larger number of walks. The histograms in Figure 5
illustrate the queue size distribution for this scenario as well.

V. CONCLUSIONS

In this study we introduced a protocol to maintain O(n)
random walks over an overlay network, where the random
walks represent independent decentralized tasks that might
belong to different users. We motivated this service with a
decentralized data mining application, gossip learning, but
any applications based on random walks could be supported.
The protocol follows a three-level design where problems
not solved at a lower level get escalated to the next level.

During our experimental evaluation we used a smartphone
trace to model churn. We demonstrated that in all the
scenarios we tested the vast majority of failures are dealt
with at the lowest level that is purely local and therefore
scalable. Only a small fraction of the problems get escalated
to level two that is based on a broadcast primitive. In this
case the cost of broadcast messages was shown to be almost
negligible due to the small number of failure cases that
reach this level. Thus, the overhead introduced by level two
is small relative to the communication cost of the random
walks. Level three, the central control by the task owner,
was reached only a few times during all our simulations.
We also demonstrated that the speed of the random walks
is close to optimal.
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