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In  this paper,  the improvement  in  room  temperature  ethanol  sensing  characteristics  of  zinc  peroxide
(ZnO2)  based  hybrid  thin  films  is presented  by  the  combination  of  the  beneficial  sensing  properties
of  mesoporous  materials  and  reflectometric  interference  spectroscopy  (RIfS).  The  hybrid  thin  films
were  prepared  by  Layer-by-Layer  (LbL)  self-assembly  method  from  ZnO2 nanoparticles,  polyelectrolyte
[poly(acrylic  acid),  PAA]  and/or  mesoporous  silica  (MPS).  The  expected  improved  sensing  properties  were
attributed to  the  fractal  properties  and  high  specific  surface  area  (as) of  the mesoporous  coating/interlayer
material,  which  was  evidenced  by small  angle  X-ray  scattering  (SAXS)  and  N2 sorption  measurements
(as > 650  m2/g).  The  sensor  tests  showed  that  the  detection  limit  of the  thin films  is  in the  sub-ppm  range
(<500  ppb).  Applying  silica  foam  (SF)  as surface  coating  or interlayer  material  in  the  sandwich-structured
esoporous silica
oom temperature
ub-ppm
thanol sensor

thin  film  (ZnO2/SF)  improved  the  optical  response  (�l: wavelength  shift)  compared  to  the  ZnO2/PAA  thin
layer,  but  the  sensitivity  showed  non-linear  characteristic  and  signal  drift.  The  thin  film  with  mixed  struc-
ture  (ZnO2/PAA/ZnO2/SF)  showed  linear  sensitivity  (��/�c  =  0.6  nm/ppm)  in the 0.5–12  ppm  range  with
an  acceptable  selectivity  and  stable  baseline.  Testing  the  sensor  in extended  (up to  40  ppm)  concentration
range  showed  only  a slight  quadratic  deviation  from  linear  behavior  with  R2 =  0.9987.

©  2016  Elsevier  B.V.  All  rights  reserved.
. Introduction

Sensors for volatile organic compounds (VOCs) (e.g. alcohols,
enzene etc.) play an important role in everyday life and indus-
rial safety. Indisputable fact is that these chemical agents are
armful and unhealthy, so the detection of these molecules has

 great importance in environmental and health protection, such
s in air and water quality control, food industry or – especially in
he case of ethanol – the “driving under influence” (DUI) control.
onsidering a comprehensive, although not complete overview
f the articles published in recent years in ethanol sensors topic

Fig. 1) we can conclude that the principles, technical solutions,
he materials used, the operating temperature ranges and con-
entration levels are fairly diversified. The most commonly used

∗ Corresponding author.
E-mail address: sebokd@chem.u-szeged.hu (D. Sebők).

ttp://dx.doi.org/10.1016/j.snb.2016.12.097
925-4005/© 2016 Elsevier B.V. All rights reserved.
sensor materials are SnO2 [1–3], ZnO [4–7], SiO2 [8], In2O3 [9]
TiO2 [10], Fe2O3 [11,12] and other nanostructures [13–16], com-
posites [17–25] or coatings [26,27]. The measurement principle is
mainly based on the resistive method, but also capacitive [8,15],
optical [2,26–28], quartz crystal microbalance (QCM) [26,28] and
piezo (self-powering device) [7,21,22] applications can be found.
Fig. 1 shows the principles, studied concentration ranges and oper-
ating temperatures presented in the works cited above. It can be
seen that the studies can be divided into two major groups: room
temperature (RT) and high temperature (around 200 and 300 ◦C)
applications. Mainly electrical methods and mesoporous sensing
materials are preferred in the latter case, thereby broad concen-
tration ranges with excellent detection limits can be achieved.
However, it has to be noted that VOC pollutants easily evaporate

at room temperature and can be very harmful and carcinogenic
already at low concentration. It can be seen on Fig. 1 that most
of the RT technical solutions [2,7,8,15,16,26–28] are able to detect
ethanol vapour only above 10 ppm concentration. In this work,

dx.doi.org/10.1016/j.snb.2016.12.097
http://www.sciencedirect.com/science/journal/09254005
http://www.elsevier.com/locate/snb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.snb.2016.12.097&domain=pdf
mailto:sebokd@chem.u-szeged.hu
dx.doi.org/10.1016/j.snb.2016.12.097
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ig. 1. Diagram summarizing the comprehensive, although not complete overvi
easurement principles, the studied concentration ranges and operating temperat

e made an attempt to combine the beneficial sensing properties
f mesoporous materials [3,29,30] and reflectometric interference
echnique [31] to construct a highly sensitive ethanol sensor oper-
ting at room temperature.

Reflectometric interference spectroscopy [28,31–36] is an opti-
al method which is based on the spectral (red) shift of the
nterference pattern reflected from a (few hundred nanometers of
ayer thickness) thin film. The wavelength shift is caused by the
dsorption or adhesion of molecules or colloidal units, so it can be
tilized in antigen-antibody reactions or to detect the adsorption of
olatile compounds []. The sensor surface of RIfS technique can be
repared by using the wet colloid chemical procedure, the so-called
ayer-by-Layer method [37,38]. The LbL method is widely used
or thin film preparation directly from colloidal systems (nanopar-
icles, polymer solutions, etc.): it is an easy, non-instrumental
echnique and it results a homogeneous surface and well-ordered,
ransparent structure with controllable film thickness and a fine
nd porous microstructure [39], like the similar Langmuir-Blodgett
ethod [40,41]. These are essential conditions for applying RIfS

echnique, and the sensitivity, as well as, the limit of detection can
e improved by the addition of various surface-modifying agents
28,31].

In the present work we demonstrate the beneficial effect
f using mesoporous silica materials on the sensitivity and
etection limit of RIfS sensor in the gas phase. We  show that
pplying mixed (nanoparticle/polyelectrolyte/mesoporous silica)
anostructure results linear sensitivity and sub-ppm ethanol detec-
ion limit without response drift, while both the response time and
electivity remain stable and adequate. Furthermore, firstly in this

ork we carried out reflection intensity measurement in addition

o the wavelength shift monitoring: the two types of responses dif-
er significantly, which may  highlight – by further studies – the
 the articles published in recent years in ethanol sensors topic (grouped by the
ote: room temperature has not detailed scale!).

differences between the adsorption mechanisms onto the various
surfaces.

2. Experimental

2.1. Materials

Zinc peroxide nanoparticles with an average diameter of 80 nm
were synthesized by the photolysis of zinc acetate dehydrate
(C4H6O4Zn·2H2O, Fluka, a.r.) described in [38]. Poly(acrylic acid)
(PAA, MW = 100000, Sigma, a.r.) was  used as a negatively charged
polyelectrolyte. Furthermore, SBA-15 and silica foam were used as
coatings or negatively charged interlayer materials. Synthesis of
SBA-15 silica is well-known [42]. Mesoporous SF were prepared
by a modified sol-gel route based on the technique suggested by
Bagshaw [43]. In a typical synthesis, 13.9 g TEOS was  slowly added
to 30 mL  10 w% Triton X114 aqueous solution and the synthe-
sis mixture were vigorously stirred for 24 h. The obtained silica
suspension was collected by vacuum filtration and left to dry at
room temperature for 24 h. The dried sample was introduced into
a Teflon-lined stainless steel autoclave with a volume of 100 mL
where 10 mL  water was also added separately to ensure water
vapour environment. After the assembly of the autoclave, it was
held at 140 ◦C for 24 h. Finally, the silica foam was calcined in air at
450 ◦C for 4 h.

2.2. Thin film preparation

Five types of hybrid thin films were prepared by using the

ZnO2 nanoparticles, negatively charged PAA polyelectrolyte and
the mesoporous silica samples (see Fig. 2): (1.) 20 zinc perox-
ide/poly(acrylic acid) bilayers ([ZnO2/PAA]20); (2–3.) [ZnO2/PAA]20
films with silica foam and SBA-15 coatings ([ZnO2/PAA]20 +SF
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Fig. 2. The schematic view of the 

nd [ZnO2/PAA]20 +SBA); (4.) a thin film containing 20 bilay-
rs of zinc peroxide/silica foam ([ZnO2/SF]20) and (5.) a thin
lm containing 10 mixed, zinc peroxide/poly(acrylic acid)/zinc
eroxide/silica foam multilayers ([ZnO2/PAA/ZnO2/SF]10). During
re-experiments, SBA-15 was not suitable as interlayer material

n thin films consisting of 40 layers, therefore, it was  only applied
s a coating. The thin films were prepared by the LbL deposition
ethod by the alternated adhesion/adsorption of ZnO2 nanoparti-

les, poly(acrylic acid) [44] and mesoporous silica nanostructures
SBA-15 and SF) on the surface of glass substrate (microscope slides,

arienfeld Superior, Germany). The thin film preparation was  car-
ied out by using c = 8 g/L ZnO2, c = 0.1 g/L PAA and c = 10 g/L silica
olutions. The immersion time was 10 min  for each step, which was
ollowed by rinsing with deionized water to remove the surplus
non-electrostatically attached) colloid units. During the coating
rocess the previously prepared zinc-peroxide/poly(acrylic acid)
ybrid films were immersed into the silica suspension and were
ried without rinsing the surplus.

.3. Instrumental methods

Transmission Electron Microscopy (TEM) measurements were
arried out by a FEI TECNAI G2 20 X-Twin high-resolution trans-
ission electron microscope (equipped with electron diffraction)

perating at an accelerating voltage of 200 kV. The samples were
rop-cast onto carbon film coated copper grids from ethanol sus-
ension.

The specific surface area (BET method) and the total pore volume
ere determined by the BJH method using a Quantachrome NOVA

200 gas sorption analyzer by N2 gas adsorption/desorption at 77 K.
efore the measurements, the samples were pre-treated in vacuum
t 200 ◦C for 2 h. The density of the silica powders was  measured
sing a helium

gas pycnometer (Micromeritics type 1305).
SAXS technique was  used to investigate the fractal properties

nd structural parameters of the mesoporous silica components.
AXS curves were recorded with a slit-collimated Kratky com-
act small-angle system (KCEC/3 Anton-Paar KG, Graz, Austria)
quipped with a position-sensitive detector (PSD 50 M from M.
raun AG Munich, Germany) containing 1024 channels 55 �m

n width. CuK� radiation (�CuK�=0.1542 nm)  was generated by a
hilips PW1830 X-ray generator operating at 40 kV and 30 mA.  The
ractal dimension of a two-phase system can be determined by
sing the following equation: I(h) = I0 h−p, where h = 4� sin � �−1

s the scattering vector, � is one-half of the scattering angle, � is the
avelength of CuK� radiation, I(h) is the scattering curve, I0 is the

cattered intensity at h = 0, and p is the slope of the fitted line in

he higher h-range (Porod regime) in log-log plot of the scattering
urve. If 3 < p < 4 then the sample is surface fractal, and the sam-
le has mass fractal properties in the case of 1 < p < 3. The specific
urface area (as) values were calculated by using equations in [45].
red and applied hybrid thin films.

The optical properties of the thin films were studied by a
Nanocalc 2000 spectrophotometer with ADC1000-USB A/D con-
verter (Ocean Optics). The reflection spectra of the films were
measured in a special, home-built test cell at detection angle of
45◦. The thickness (d) and effective refractive index (n1) of the thin
films were calculated based on the model presented in Fig. 3.a and
by using (and fitting) Eq. (1) (more details in [38]):

R (�, ne, d) = c1 + c2 · cos
(

4�n1d cos ε1

�

)
(1)

where ε1 is the angle of refraction at air/thin film interface, � is
the wavelength, c1 and c2 are constants which contain the tij and rij
transmission and reflection amplitudes calculated by Fresnel equa-
tions (i,j = 0,1,2, see Fig. 3.a).

The same test cell was used during the sensorial tests in dynamic
conditions (Fig. 3.b): it was connected to a gas flow system which
consists of the carrier gas (N2) holder, the temperature controlled
liquid sample holder and a number of flow controllers (MFC) (Cole-
Parmer, USA). The vapour concentration in the test cell can be
controlled by the MFC  units and V1-V5 valves via the mixing rate of
pure and vapour containing N2 flows (the flow controllers can reg-
ulate maximum 3922, 844 and 49 mL/min gas flow). The accuracy
of the flow adjusting on the MFC  scale is ±0.5 division, so the preci-
sion of the concentration is ±0.04 ppm or ±0.68 ppm in the case of
the max. 49 mL/min or the max. 844 mL/min devices, respectively.
The ethanol dosage and rinsing (N2) times were 3–3 min, alter-
nately. The sensor responses, �� (nm) and �R (a.u.) were defined
as the wavelength shift of the given extreme of the reflection spec-
tra and the change of the reflection value corresponding to this
extreme, respectively. The measurements in each concentration
steps (475-11880 ppb) were repeated three times, the responses
were determined as the average of the three value. During selec-
tivity measurements 2 �L of liquids (methanol, ethanol as alcohols;
n-hexane as aliphatic; toluene, xylene as aromatic molecules) was
dropped into the liquid sample holder (in this case T = 70 ◦C) with
a mixing rate of 4.9 mL/min sub-branch and 1000 mL/min main
branch flow rates.

3. Results and discussion

3.1. Characterization of the mesoporous silica materials

The porosity, pore system characteristic and specific surface
area are of great importance in the case of mesoporous adsor-
bents used in sensorial applications, therefore several structural
parameters were determined and calculated by using SAXS tech-
nique. As it is known in the literature, SBA-15 has 2D hexagonally

ordered pore system [38], which can be identified by TEM and SAXS
technique (Fig. 4.a: A and B). Both measurements clearly show the
pore structure; in the latter case the peaks at h = 0.705, 1.235 and
1.41 nm−1 correspond to the 1:

√
3:2 ratio, thereby the P6 mm  sym-
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ig. 3. a The used thin film model for thickness and refractive index calculations (in
ystem and reflectometric test cell) and the measurement principle.

etry is clearly identified [46]. The double logarithmic plot of the
cattering curve is suitable for determining the fractal properties
f the material. In the case of SBA-15 the slope is approximately
2 in the higher h-range, which indicates a frame-like surface frac-

al structure, as well as, p ≈ −3.5 for SF sample is characteristic for
he smooth surface feature of the mesocellular foam structure (see
ig. 4.a: C). The specific surface area values determined by SAXS
easurements are 820 and 730 m2/g for SBA-15 and SF, respec-

ively.
The N2 adsorption/desorption studies of the silica samples show

sotherms with hysteresis loop and pore size distributions between
 and 10 nm characteristic for mesoporous materials (Fig. 4.b). The
pecific surface areas and average pore diameters are 798 m2g−1,
.2 nm and 666 m2g−1, 4.6 nm for SBA-15 and SF, respectively. In
ummary, the SBA-15 has higher specific surface area, however the
F showed higher total pore volume (Vp = 0.76 and 1.30 cm3g−1

or SBA-15 and SF, respectively). The overall conclusion is that
lthough the structural and fractal nature of these mesoporous
aterials are significantly different, but the average pore diameters

nd specific surface areas are similar, and these values appear to be
ufficiently high for considerable adsorption capacity and sensorial

pplications.
 0–air, 1–thin film, 2–substrate). b Scheme of the used experimental setup (gas flow

3.2. Thin film characterization

The recorded and fitted (in the � = 550–850 nm range) reflection
spectra and the calculated refractive index curves of three types of
thin films (without coating) can be seen on Fig. 5. The layer thick-
nesses and effective refractive indices (at � = 589 nm)  are 782 nm
and 1.286, 894 nm and 1.258, 989 nm and 1.251 for [ZnO2/PAA]20,
[ZnO2/PAA/ZnO2/SF]10 and [ZnO2/SF]20, respectively. It can be
established that using SF silica as interlayer material increases the
thickness (d) and decreases the effective refractive index (n1) of the
thin films. In our opinion, the main reasons for this is the follow-
ing: these type of highly porous silica nanostructures significantly
increase the micro- and macro-level porosity of the hybrid films,
thereby considerably decrease the effective refractive index, while
the polyelectrolyte forms ultrathin layers in the multilayer struc-
ture, thereby ensuring a closer packing for the ZnO2 nanoparticles.
Increasing the porosity and forming thicker and porous interlayers
in the sandwich-like structure explain the slightly lower refractive
indices, higher film thicknesses and the advantageous effect in sen-
sorial tests (presented later in 3.3). In the case of [ZnO2/PAA]20 +SF
and [ZnO /PAA] +SBA films the silica monolayer has no signifi-
2 20
cant contribution to the refractive index and layer thickness, and
given the fact that for these samples the coating had no significant
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Fig. 4. a (A) A representative TEM image of the mesoporous SBA-15 sample, (B) the SAXS curves of SBA-15 and SF powder samples in log–log representation (the power-law
exponents are indicated by dotted lines) and (C) the TEM image of the SF silica sample. b (A,C) BET isotherms for the SBA-15 and SF silica samples show the mesoporous
characteristic, (B,D) pore size distribution of SBA-15 and SF samples, respectively.
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ig. 5. (A) The measured (solid lines) and calculated (dotted lines) reflection spectra
efractive index curves.

ffect in the sensorial tests, the detailed discussion of the optical
roperties is ignored in this paragraph.

.3. Sensorial test of the hybrid thin films

The thin films were subjected to reflectometric interference
easurements for testing sensorial applications. The measure-
ents were carried out by measuring the shift of the local minimum

f reflected intensity near �=500 nm wavelength. It is �min = 457 nm
n the case of [ZnO2/PAA]20, and �min = 507 nm and 568 nm for
ZnO2/PAA/ZnO2/SF]10 and [ZnO2/SF]20, respectively (these values
re valid in the t = 0 measurement point). The raw results (sen-

orgrams), i.e., the ��  vs. t and �R  vs. t curves are presented
n Fig. 6.a and b, respectively. Conspicuous differences can be
oticed viewing either the two sensorgrams or the curves one
y one. It can be immediately concluded that in the case of ��
O2/PAA]20, [ZnO2/PAA/ZnO2/SF]10 and [ZnO2/SF]20 thin films, and (B) the calculated

curves the responses are positive because of the optical thick-
ness increases due to the vapour adsorption. Significant signal drift
can be observed in the case of ZnO2/PAA, ZnO2/PAA + coating and
ZnO/SF thin films, which is rather disturbing phenomenon: should
be drift compensation applied? In this case, not in general. f it
is ignored then each measurement step (at the same concentra-
tion) results in higher response than the previous one and this
fact makes impossible to accurately determine unknown concen-
trations. As it can be seen on the ��  calibration (response vs.
concentration) curves (Fig. 7.a), we  did not apply compensation, the
responses increase with concentration, even if not linearly. How-
ever, in the case of [ZnO2/PAA/ZnO2/SF]10 hybrid thin film response

drift was not observed which resulted a linear �� calibration curve
(0.586 nm/ppm). In the case of �R  vs. t curves (Fig. 6.b) positive
response can be observed only in the case of [ZnO2/PAA]20 sen-
sor, but if the thin film contains MPS  (as interlayer material or
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Fig. 6. a Ethanol sensing tests: ��  vs. t curves for the tested thin films (labels:
structure of the thin film and the ethanol concentration steps); inset: response of
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Fig. 7. a Ethanol sensing ��(nm) vs. c(ppm) calibration curves for the pre-
pared thin layers (labels: structure of the thin films and calibration equation for
[ZnO2/PAA/ZnO2/SF]10 mixed structure). b Ethanol sensing �R vs. c(ppm) calibration
ZnO2/PAA/ZnO2/SF]10 mixed structure for c = 475 ppb EtOH. b Ethanol sensing tests:
R  vs. t curves for the tested thin films (labels: structure of the thin film and the

thanol concentration steps).

oating) then the reflectivity decreases due to the ethanol dosage.
urthermore, the responses of the coated thin films are lower than
he original, as well as, the signal is not evaluable in the case of
ZnO2/SF]20 sensor surface. It can be stated that evaluable �R  sig-
al and linear calibration can only be attributed to PAA containing
ultilayers (without coating), and the response can be improved by

nterlayered mesoporous silica foam (Fig. 7.b: for clarity, the abso-
ute values of the responses are plotted). In summary, it was  found
hat applying [ZnO2/PAA], [ZnO2/PAA] + MPS  coating or [ZnO2/SF]
tructured thin layers mostly failed due to the signal drift and non-
inear sensitivity. The mixed structure of [ZnO2/PAA/ZnO2/SF] was
evoid of drift and showed linear calibration curves, so this type
f hybrid (nanoparticle/polyelectrolyte/mesoporous silica) multi-

ayer is an appropriate structure to apply as sensing surface in
eflectometric interference sensor in gas phase. Furthermore, we
an conclude that during RIfS measurements on solid/gas interface
he monitoring of �R(t) beside the conventional ��(t) signal may
eveal the complexity of the adsorption processes and mechanisms
n meso- and macroporous hybrid thin films.

Based on the presented results the [ZnO2/PAA/ZnO2/SF]10 thin
lm was selected for further experiments, such as reproducibil-

ty, response time analysis and selectivity (Fig. 8). It can be stated
hat the sensors signal is well reproducible (Fig. 8A), the sen-

ors response reaches the 90% of maximum value within 40 s and
t is relaxed to 10% within 80 s (t90% and t10% on Fig. 8B) (the
otal response and recovery times were 180–180 s). Selectivity was
ested by dropping 2 �L of different liquids into a 70 ◦C liquid sam-
curves for the prepared thin layers (labels: structure of the thin films and calibration
equations for [ZnO2/PAA]20 and [ZnO2/PAA/ZnO2/SF]10 mixed structures).

ple holder, which was connected into the 1000 mL/min carrier
gas stream towards the RIfS test cell. The liquids were methanol,
ethanol, n-hexane, toluene and xylene. The studied thin films were
[ZnO2/PAA]20 and [ZnO2/PAA/ZnO2/SF]10 to investigate the effect
of silica foam on the selectivity. It was established that in the case
of ZnO2/PAA/SF mixed structure 2–3 times higher response was
observed for ethanol than for the other volatile organic compounds
(VOC), although also the affinity to aromatic molecules increased
compared to ZnO2/PAA structure (Fig. 8C).

3.4. Extending the concentration range

The sensor signal and calibration curve of ZnO2/PAA/ZnO2/SF
mixed structure in the low ppm range (∼0.48-11.9 ppm) was pre-
sented on Fig. 6.a and 7.a, respectively. It was demonstrated that
the lowest set and detected ethanol vapour concentration was
475 ±40 ppb, and the ��  vs. c calibration curve was linear in the
c = 475–11880 ppb range. Next the [ZnO2/PAA/ZnO2/SF]10 thin film
was subjected to sensorial test in a higher, c = 2.46-37 (±0.68) ppm
range (Fig. 9.a). The concentration steps (0–50 min) were repeated
after a 50 min  long baseline stability test. The statement was  that
the sensor has a fairly stable baseline (without drift), but the ��

calibration curve showed a slight quadratic deviation from linear
behavior (Fig. 9.b). The most important parameters are summarized
in Table 1.
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Table  1
Structure, layer number and layer thickness of thin films used in sensorial application, and concentration range, calibrating equation (�� as the function of concentration,
c),  R2 parameter and drift properties obtained from sensorial tests (*: LOD and LOD assuming error-free calibration values were calculated by [47] for [ZnO2/PAA/ZnO2/SF]10

in c = 0.48-11.9 ppm range). The table contains earlier reflectometric interference results for comparison (original and surface modified – by butyltrichlorosilane, BTS –
[ZnO2/poly(styrenesulfonate)]20 thin films).

Thin film d (nm) c range (ppm) Calibration, ��=f(c) R2 Drift LOD  (ppm)

[ZnO2/PAA]20 782 0.48–11.9 −0.0086c2 + 0.339c 0.997 yes –
[ZnO2/SF]20 989 3rd order – yes –
[ZnO2/PAA/ZnO2/SF]10 894 0.586c a 0.996 no 0.61b

[ZnO2/PAA/ZnO2/SF]10 894 0.573c c 0.996 no 0.63 d

[ZnO2/PAA/ZnO2/SF]10 894 2.46–37 0.0107c2 + 0.427c 0.999 no –
[ZnO2/PSS]20

e 514 0−128 0.038c + 0.536 0.998 no 29.2
[ZnO2/PSS]20 + BT e 0−106 0.331c–0.652 0.997 no 10.3
[ZnO2/PSS]20 +BTS e 0−50 0.293c–0.140 0.999 no 5.5

The results indicated by bold font are the most important results of this article, and a significant part of the discussion is detailed about this (ZnO2/PAA/ZnO2/SF) type of
nanostructure.

a calibration by using continuously selected amounts of concentrations.
b LODefc (assuming error-free calibration) = 0.27 ppm; [47].
c calibration by using randomly selected amounts of concentrations.
d LODefc (assuming error-free calibration) = 0.29 ppm; [47].
e D. Sebők, I. Dékány, Sensor. Actuat. B-Chem. 206 (2015) 435–442. [28].

Fig. 8. Response analysis for [ZnO2/PAA/ZnO2/SF]10 mixed structure: (A) repro-
ducibility, (B) response and recovery times and (C) selectivity compared to
[ZnO2/PAA]20 thin film.

Fig. 9. a Ethanol sensing test in extended concentration range: �� vs. t curves for
[ZnO2/PAA/ZnO2/SF]10 thin film in the 2.46–37 ppm range (black line) compared
to  the 0.48-11.9 ppm concentration range (gray line) (labels: ethanol concentration
steps). b Ethanol sensing test in extended concentration range: ��(nm) vs. c(ppm)
calibration curves for [ZnO2/PAA/ZnO2/SF]10 thin film in the 2.46–37 ppm range
(white squares) compared to the 0.48-11.9 ppm concentration range (black circles)
(labels: calibration equations).
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. Conclusions

In this work we successfully combined the beneficial sensing
roperties of mesoporous silica materials and reflectometric inter-

erence technique to construct a highly sensitive ethanol sensor
perating at room temperature. The structural parameters and frac-
al properties of the silica samples (SBA-15 and silica foam) were
tudied by TEM, BET and SAXS techniques: latter methods showed
hat the specific surface area of the MPSs is over 650 m2/g. The three
ypes of hybrid thin films, namely ZnO2/polyelectrolyte (PAA),
nO2/mesoporous silica foam (SF) and a mixed, ZnO2/PAA/ZnO2/SF
tructures were subjected to sensorial tests in the gas phase.

e showed that the detection limit of the sensor is sub-ppm
<500 ppb), but only the mixed (ZnO2/PAA/ZnO2/SF) nanostruc-
ure showed linear sensitivity in the 0.4-11.9 ppm range without
esponse drift, while both the response time and selectivity remain
easonable good. Testing the sensor in extended (up to 37 ppm)
oncentration range showed a slight quadratic deviation from lin-
ar behavior. In the future the functionalization of the sensor
urface by different modifying agents is expected to enhance the
electivity and sensitivity of the sensor.

cknowledgements

The authors are very thankful for the financial support from
he Hungarian Scientific Research Fund (NKFIH OTKA) PD 116224
nd GINOP-2.3.2-15-2016-00013. The work was earlier partially
upported by the European Union and the State of Hungary,
o-financed by the European Social Fund in the framework of
ÁMOP4.2.4. A/2-11-1-2012-0001 ‘National Excellence Program’.
S is grateful for the support of János Bolyai Research Scholarship
f the Hungarian Academy of Sciences.

ppendix A. Supplementary data

Supplementary data associated with this article can be found, in
he online version, at http://dx.doi.org/10.1016/j.snb.2016.12.097.

eferences

[1] X. Feng, J. Jiang, H. Ding, R. Ding, D. Luo, J. Zhu, Y. Feng, X. Huang,
Carbon-assisted synthesis of mesoporous SnO2 nanomaterial as highly
sensitive ethanol gas sensor, Sensor. Actuat. B-Chem. 183 (2013) 526–534,
http://dx.doi.org/10.1016/j.snb.2013.04.006.

[2]  S. Sharifpour-Boushehri, S.M. Hosseini-Golgoo, M.-H. Sheikhi, A low cost and
reliable fiber optic ethanol sensor based on nano-sized SnO2, Opt. Fiber
Technol. 24 (2015) 93–99, http://dx.doi.org/10.1016/j.yofte.2015.05.002.

[3]  W.  Tan, Q. Yu, X. Ruan, X. Huang, Design of SnO2-based highly sensitive
ethanol gas sensor based on quasi molecular-cluster imprinting mechanism,
Sensor. Actuat. B-Chem. 212 (2015) 47–54, http://dx.doi.org/10.1016/j.snb.
2015.01.035.

[4] L. Zhang, J. Zhao, H. Lu, L. Li, J. Zheng, H. Li, Z. Zhu, Facile synthesis and
ultrahigh ethanol response of hierarchically porous ZnO nanosheets, Sensor.
Actuat. B-Chem. 161 (2012) 209–215, http://dx.doi.org/10.1016/j.snb.2011.
10.021.

[5] L. Wang, Y. Kang, X. Liu, S. Zhang, W.  Huang, S. Wang, ZnO nanorod gas sensor
for  ethanol detection, Sensor. Actuat. B-Chem. 162 (2012) 237–243, http://dx.
doi.org/10.1016/j.snb.2011.12.073.

[6]  F. Meng, S. Ge, Y. Jia, B. Sun, Y. Sun, C. Wang, H. Wu,  Z. Jin, M.  Li, Interlaced
nanoflake-assembled flower-like hierarchical ZnO microspheres prepared by
bisolvents and their sensing properties to ethanol, J. Alloy. Compd. 632 (2015)
645–650, http://dx.doi.org/10.1016/j.jallcom.2015.01.289.

[7] P. Wang, Y. Fu, B. Yu, Y. Zhao, L. Xing, X. Xue, Realizing room-temperature
self-powered ethanol sensing of ZnO nanowire arrays by combining their
piezoelectric, photoelectric and gas sensing characteristics, J. Mater. Chem. A
3  (2015) 3529–3535, http://dx.doi.org/10.1039/C4TA06266C.

[8]  X.J. Li, S.J. Chen, C.Y. Feng, Characterization of silicon nanoporous pillar array

as room-temperature capacitive ethanol gas sensor, Sensor. Actuat. B-Chem.
123 (2007) 461–465, http://dx.doi.org/10.1016/j.snb.2006.09.021.

[9]  S. Zhang, P. Song, H. Yan, Z. Yang, Q. Wang, A simple large-scale synthesis of
mesoporous In2O3 for gas sensing applications, Appl. Surf. Sci. 378 (2016)
443–450, http://dx.doi.org/10.1016/j.apsusc.2016.04.019.

[

ors B 243 (2017) 1205–1213

10] A. Hazra, K. Dutta, B. Bhowmik, P. Bhattacharyya, Repeatable low-ppm
ethanol sensing characteristics of p-TiO2-based resistive devices, IEEE sens, J.
15  (2015) 408–416, http://dx.doi.org/10.1109/JSEN.2014.2345575.

11] A. Mirzaei, K. Janghorban, B. Hashemi, M.  Bonyani, S.G. Leonardi, G.  Neri,
Highly stable and selective ethanol sensor based on �-Fe2O3 nanoparticles
prepared by Pechini sol–gel method, Ceram. Int. 42 (2016) 6136–6144, http://
dx.doi.org/10.1016/j.ceramint.2015.12.176.

12] J. Tan, J. Chen, K. Liu, X. Huang, Synthesis of porous (-Fe2O3 microrods via
in situ decomposition of FeC2O4 precursor for ultra-fast responding and
recovering ethanol gas sensor Sensor, Actuat. B-Chem. 230 (2016) 46–53,
http://dx.doi.org/10.1016/j.snb.2016.02.012.

13] J. Liu, X. Wang, Q. Peng, Y. Li, Vanadium pentoxide nanobelts: highly selective
and stable ethanol sensor materials, Adv. Mater. 17 (2005) 764–767, http://
dx.doi.org/10.1002/adma.200400993.

14] T.T. Le Dang, M.  Tonezzer, Polycrystalline NiO nanowires: scalable growth and
ethanol sensing, Proc. Eng. 120 (2015) 427–434, http://dx.doi.org/10.1016/j.
proeng.2015.08.658 (Eurosensors 2015).

15] M.S. Hosseini, S. Zeinali, M.H. Sheikhi, Fabrication of capacitive sensor based
on  Cu-BTC (MOF-199) nanoporous film for detection of ethanol and methanol
vapors, Sensor. Actuat. B-Chem. 230 (2016) 9–16, http://dx.doi.org/10.1016/j.
snb.2016.02.008.

16] A. Renitta, K. Vijayalakshmi, A novel room temperature ethanol sensor based
on catalytic Fe activated porous WO3 microspheres, Catal. Commun. 73
(2016) 58–62, http://dx.doi.org/10.1016/j.catcom.2015.10.014.

17] Z. Zhu, C.-T. Kao, R.-J. Wu,  A highly sensitive ethanol sensor based on Ag@TiO2

nanoparticles at room temperature, Appl. Surf. Sci. 320 (2014) 348–355,
http://dx.doi.org/10.1016/j.apsusc.2014.09.108.

18] X.L. Xu, Y. Chen, S.Y. Ma,  W.Q. Li, Y.Z. Mao, S.H. Yan, T. Wang, Facile synthesis
of  SnO2 mesoporous tubular nanostructure with high sensitivity to ethanol,
Mater. Lett. 143 (2015) 55–59, http://dx.doi.org/10.1016/j.matlet.2014.12.
064.

19] M.  Bagheri, A.A. Khodadadi, A.R. Mahjoub, Y. Mortazavi, Gallia–ZnO
nanohybrid sensors with dramatically higher sensitivity to ethanol in
presence of CO, methane and VOCs, Sensor. Actuat. B-Chem 223 (2016)
576–585, http://dx.doi.org/10.1016/j.snb.2015.09.137.

20] S. Luo, Y. Shen, Z. Wu,  M.  Cao, F. Gu, L. Wang, Enhanced ethanol sensing
performance of mesoporous Sn-doped ZnO, Mat. Sci. Semicon. Proc. 41 (2016)
535–543, http://dx.doi.org/10.1016/j.mssp.2015.10.001.

21] M.  NaderiNasrabadi, Y. Mortazavi, A.A. Khodadadi, Highly sensitive and
selective Gd2O3-doped SnO2 ethanol sensors synthesized by a high
temperature and pressure solvothermal method in a microreactor, Sensor.
Actuat. B-Chem. 230 (2016) 130–139, http://dx.doi.org/10.1016/j.snb.2016.
02.045.

22] D. Zhu, Y. Fu, W.  Zang, Y. Zhao, L. Xing, X. Xue, Room-temperature
self-powered ethanol sensor based on the piezo-surface coupling effect of
heterostructured �-Fe2O3/ZnO nanowires, Mater. Lett. 166 (2016) 288–291,
http://dx.doi.org/10.1016/j.matlet.2015.12.106.

23] Y. Lin, P. Deng, Y. Nie, Y. Hu, L. Xing, Y. Zhang, X. Xue, Room-temperature
self-powered ethanol sensing of a Pd/ZnO nanoarray nanogenerator driven by
human finger movement, Nanoscale 6 (2014) 4604–4610, http://dx.doi.org/
10.1039/C3NR06809A.

24] B.-Y. Kim, J.S. Cho, J.-W. Yoon, C.W. Na, C.-S. Lee, J.H. Ahn, Y.C. Kang, J.-H. Lee,
Extremely sensitive ethanol sensor using Pt-doped SnO2 hollow nanospheres
prepared by Kirkendall diffusion, Sensor. Actuat. B-Chem. 234 (2016) (2016)
353–360, http://dx.doi.org/10.1016/j.snb.2016.05.002.

25] Q. Wang, X. Li, F. Liu, Y. Sun, C. Wang, X. Li, P. Sun, J. Lin, G. Lu,
Three-dimensional flake-flower Co/Sn oxide composite and its excellent
ethanol sensing properties, Sensor. Actuat. B-Chem. 230 (2016) 17–24, http://
dx.doi.org/10.1016/j.snb.2016.01.147.

26] M.  Penza, G. Cassano, P. Aversa, F. Antolini, A. Cusano, M.  Consales, M.
Giordano, L. Nicolais, Carbon nanotubes-coated multi-transducing sensors for
VOCs detection, Sens. Actuators B: Chem. 111–112 (2005) 171–180, http://dx.
doi.org/10.1016/j.snb.2005.06.055.

27] M.  Consales, A. Crescitelli, M. Penza, P. Aversa, P. Delli Veneri, M.  Giordano, A.
Cusano, SWCNT nano-composite optical sensors for VOC and gas trace
detection, Sensor. Actuat. B-Chem. 138 (2009) 351–361, http://dx.doi.org/10.
1016/j.snb.2009.02.041.

28] D. Seb"ok, I. Dékány, ZnO2 nanohybrid thin film sensor for the detection of
ethanol vapour at room temperature using reflectometric interference
spectroscopy, Sensor. Actuat. B-Chem. 206 (2015) 435–442, http://dx.doi.org/
10.1016/j.snb.2014.09.087.

29] Q. Qi, T. Zhang, X. Zheng, L. Wan, Preparation and humidity sensing properties
of  Fe-doped mesoporous silica SBA-15, Sensor. Actuat. B-Chem 135 (2008)
255–261, http://dx.doi.org/10.1016/j.snb.2008.08.036.

30] Y. Liu, J. Chen, W.  Li, D. Shen, Y. Zhao, M.  Pal, H. Yu, B. Tu, D. Zhao, Carbon
functionalized mesoporous silica-based gas sensors for indoor volatile
organic compounds, J. Colloid Interf. Sci. 477 (2016) 54–63, http://dx.doi.org/
10.1016/j.jcis.2016.05.040.

31] D. Seb"ok, Edit Csapó, Nóra Ábrahám, Imre Dékány, Reflectometric
measurement of n-hexane adsorption on ZnO2 nanohybrid film modified by
hydrophobic gold nanoparticles, Appl. Surf. Sci. 333 (2015) 48–53, http://dx.

doi.org/10.1016/j.apsusc.2015.01.150.

32] G. Gauglitz, J. Krause-Bonte, H. Schlemmer, A. Matthes, Spectral interference
refractometry by diode array spectrometry, Anal. Chem. 60 (1988)
2609–2612, http://dx.doi.org/10.1021/ac00174a015.

http://dx.doi.org/10.1016/j.snb.2016.12.097
http://dx.doi.org/10.1016/j.snb.2016.12.097
http://dx.doi.org/10.1016/j.snb.2016.12.097
http://dx.doi.org/10.1016/j.snb.2016.12.097
http://dx.doi.org/10.1016/j.snb.2016.12.097
http://dx.doi.org/10.1016/j.snb.2016.12.097
http://dx.doi.org/10.1016/j.snb.2016.12.097
http://dx.doi.org/10.1016/j.snb.2016.12.097
http://dx.doi.org/10.1016/j.snb.2016.12.097
http://dx.doi.org/10.1016/j.snb.2016.12.097
http://dx.doi.org/10.1016/j.snb.2016.12.097
dx.doi.org/10.1016/j.snb.2013.04.006
dx.doi.org/10.1016/j.snb.2013.04.006
dx.doi.org/10.1016/j.snb.2013.04.006
dx.doi.org/10.1016/j.snb.2013.04.006
dx.doi.org/10.1016/j.snb.2013.04.006
dx.doi.org/10.1016/j.snb.2013.04.006
dx.doi.org/10.1016/j.snb.2013.04.006
dx.doi.org/10.1016/j.snb.2013.04.006
dx.doi.org/10.1016/j.snb.2013.04.006
dx.doi.org/10.1016/j.snb.2013.04.006
dx.doi.org/10.1016/j.snb.2013.04.006
dx.doi.org/10.1016/j.yofte.2015.05.002
dx.doi.org/10.1016/j.yofte.2015.05.002
dx.doi.org/10.1016/j.yofte.2015.05.002
dx.doi.org/10.1016/j.yofte.2015.05.002
dx.doi.org/10.1016/j.yofte.2015.05.002
dx.doi.org/10.1016/j.yofte.2015.05.002
dx.doi.org/10.1016/j.yofte.2015.05.002
dx.doi.org/10.1016/j.yofte.2015.05.002
dx.doi.org/10.1016/j.yofte.2015.05.002
dx.doi.org/10.1016/j.yofte.2015.05.002
dx.doi.org/10.1016/j.yofte.2015.05.002
dx.doi.org/10.1016/j.snb.2015.01.035
dx.doi.org/10.1016/j.snb.2015.01.035
dx.doi.org/10.1016/j.snb.2015.01.035
dx.doi.org/10.1016/j.snb.2015.01.035
dx.doi.org/10.1016/j.snb.2015.01.035
dx.doi.org/10.1016/j.snb.2015.01.035
dx.doi.org/10.1016/j.snb.2015.01.035
dx.doi.org/10.1016/j.snb.2015.01.035
dx.doi.org/10.1016/j.snb.2015.01.035
dx.doi.org/10.1016/j.snb.2015.01.035
dx.doi.org/10.1016/j.snb.2015.01.035
dx.doi.org/10.1016/j.snb.2011.10.021
dx.doi.org/10.1016/j.snb.2011.10.021
dx.doi.org/10.1016/j.snb.2011.10.021
dx.doi.org/10.1016/j.snb.2011.10.021
dx.doi.org/10.1016/j.snb.2011.10.021
dx.doi.org/10.1016/j.snb.2011.10.021
dx.doi.org/10.1016/j.snb.2011.10.021
dx.doi.org/10.1016/j.snb.2011.10.021
dx.doi.org/10.1016/j.snb.2011.10.021
dx.doi.org/10.1016/j.snb.2011.10.021
dx.doi.org/10.1016/j.snb.2011.10.021
dx.doi.org/10.1016/j.snb.2011.12.073
dx.doi.org/10.1016/j.snb.2011.12.073
dx.doi.org/10.1016/j.snb.2011.12.073
dx.doi.org/10.1016/j.snb.2011.12.073
dx.doi.org/10.1016/j.snb.2011.12.073
dx.doi.org/10.1016/j.snb.2011.12.073
dx.doi.org/10.1016/j.snb.2011.12.073
dx.doi.org/10.1016/j.snb.2011.12.073
dx.doi.org/10.1016/j.snb.2011.12.073
dx.doi.org/10.1016/j.snb.2011.12.073
dx.doi.org/10.1016/j.snb.2011.12.073
dx.doi.org/10.1016/j.jallcom.2015.01.289
dx.doi.org/10.1016/j.jallcom.2015.01.289
dx.doi.org/10.1016/j.jallcom.2015.01.289
dx.doi.org/10.1016/j.jallcom.2015.01.289
dx.doi.org/10.1016/j.jallcom.2015.01.289
dx.doi.org/10.1016/j.jallcom.2015.01.289
dx.doi.org/10.1016/j.jallcom.2015.01.289
dx.doi.org/10.1016/j.jallcom.2015.01.289
dx.doi.org/10.1016/j.jallcom.2015.01.289
dx.doi.org/10.1016/j.jallcom.2015.01.289
dx.doi.org/10.1016/j.jallcom.2015.01.289
dx.doi.org/10.1039/C4TA06266C
dx.doi.org/10.1039/C4TA06266C
dx.doi.org/10.1039/C4TA06266C
dx.doi.org/10.1039/C4TA06266C
dx.doi.org/10.1039/C4TA06266C
dx.doi.org/10.1039/C4TA06266C
dx.doi.org/10.1039/C4TA06266C
dx.doi.org/10.1016/j.snb.2006.09.021
dx.doi.org/10.1016/j.snb.2006.09.021
dx.doi.org/10.1016/j.snb.2006.09.021
dx.doi.org/10.1016/j.snb.2006.09.021
dx.doi.org/10.1016/j.snb.2006.09.021
dx.doi.org/10.1016/j.snb.2006.09.021
dx.doi.org/10.1016/j.snb.2006.09.021
dx.doi.org/10.1016/j.snb.2006.09.021
dx.doi.org/10.1016/j.snb.2006.09.021
dx.doi.org/10.1016/j.snb.2006.09.021
dx.doi.org/10.1016/j.snb.2006.09.021
dx.doi.org/10.1016/j.apsusc.2016.04.019
dx.doi.org/10.1016/j.apsusc.2016.04.019
dx.doi.org/10.1016/j.apsusc.2016.04.019
dx.doi.org/10.1016/j.apsusc.2016.04.019
dx.doi.org/10.1016/j.apsusc.2016.04.019
dx.doi.org/10.1016/j.apsusc.2016.04.019
dx.doi.org/10.1016/j.apsusc.2016.04.019
dx.doi.org/10.1016/j.apsusc.2016.04.019
dx.doi.org/10.1016/j.apsusc.2016.04.019
dx.doi.org/10.1016/j.apsusc.2016.04.019
dx.doi.org/10.1016/j.apsusc.2016.04.019
dx.doi.org/10.1109/JSEN.2014.2345575
dx.doi.org/10.1109/JSEN.2014.2345575
dx.doi.org/10.1109/JSEN.2014.2345575
dx.doi.org/10.1109/JSEN.2014.2345575
dx.doi.org/10.1109/JSEN.2014.2345575
dx.doi.org/10.1109/JSEN.2014.2345575
dx.doi.org/10.1109/JSEN.2014.2345575
dx.doi.org/10.1109/JSEN.2014.2345575
dx.doi.org/10.1109/JSEN.2014.2345575
dx.doi.org/10.1016/j.ceramint.2015.12.176
dx.doi.org/10.1016/j.ceramint.2015.12.176
dx.doi.org/10.1016/j.ceramint.2015.12.176
dx.doi.org/10.1016/j.ceramint.2015.12.176
dx.doi.org/10.1016/j.ceramint.2015.12.176
dx.doi.org/10.1016/j.ceramint.2015.12.176
dx.doi.org/10.1016/j.ceramint.2015.12.176
dx.doi.org/10.1016/j.ceramint.2015.12.176
dx.doi.org/10.1016/j.ceramint.2015.12.176
dx.doi.org/10.1016/j.ceramint.2015.12.176
dx.doi.org/10.1016/j.ceramint.2015.12.176
dx.doi.org/10.1016/j.snb.2016.02.012
dx.doi.org/10.1016/j.snb.2016.02.012
dx.doi.org/10.1016/j.snb.2016.02.012
dx.doi.org/10.1016/j.snb.2016.02.012
dx.doi.org/10.1016/j.snb.2016.02.012
dx.doi.org/10.1016/j.snb.2016.02.012
dx.doi.org/10.1016/j.snb.2016.02.012
dx.doi.org/10.1016/j.snb.2016.02.012
dx.doi.org/10.1016/j.snb.2016.02.012
dx.doi.org/10.1016/j.snb.2016.02.012
dx.doi.org/10.1016/j.snb.2016.02.012
dx.doi.org/10.1002/adma.200400993
dx.doi.org/10.1002/adma.200400993
dx.doi.org/10.1002/adma.200400993
dx.doi.org/10.1002/adma.200400993
dx.doi.org/10.1002/adma.200400993
dx.doi.org/10.1002/adma.200400993
dx.doi.org/10.1002/adma.200400993
dx.doi.org/10.1002/adma.200400993
dx.doi.org/10.1016/j.proeng.2015.08.658
dx.doi.org/10.1016/j.proeng.2015.08.658
dx.doi.org/10.1016/j.proeng.2015.08.658
dx.doi.org/10.1016/j.proeng.2015.08.658
dx.doi.org/10.1016/j.proeng.2015.08.658
dx.doi.org/10.1016/j.proeng.2015.08.658
dx.doi.org/10.1016/j.proeng.2015.08.658
dx.doi.org/10.1016/j.proeng.2015.08.658
dx.doi.org/10.1016/j.proeng.2015.08.658
dx.doi.org/10.1016/j.proeng.2015.08.658
dx.doi.org/10.1016/j.proeng.2015.08.658
dx.doi.org/10.1016/j.snb.2016.02.008
dx.doi.org/10.1016/j.snb.2016.02.008
dx.doi.org/10.1016/j.snb.2016.02.008
dx.doi.org/10.1016/j.snb.2016.02.008
dx.doi.org/10.1016/j.snb.2016.02.008
dx.doi.org/10.1016/j.snb.2016.02.008
dx.doi.org/10.1016/j.snb.2016.02.008
dx.doi.org/10.1016/j.snb.2016.02.008
dx.doi.org/10.1016/j.snb.2016.02.008
dx.doi.org/10.1016/j.snb.2016.02.008
dx.doi.org/10.1016/j.snb.2016.02.008
dx.doi.org/10.1016/j.catcom.2015.10.014
dx.doi.org/10.1016/j.catcom.2015.10.014
dx.doi.org/10.1016/j.catcom.2015.10.014
dx.doi.org/10.1016/j.catcom.2015.10.014
dx.doi.org/10.1016/j.catcom.2015.10.014
dx.doi.org/10.1016/j.catcom.2015.10.014
dx.doi.org/10.1016/j.catcom.2015.10.014
dx.doi.org/10.1016/j.catcom.2015.10.014
dx.doi.org/10.1016/j.catcom.2015.10.014
dx.doi.org/10.1016/j.catcom.2015.10.014
dx.doi.org/10.1016/j.catcom.2015.10.014
dx.doi.org/10.1016/j.apsusc.2014.09.108
dx.doi.org/10.1016/j.apsusc.2014.09.108
dx.doi.org/10.1016/j.apsusc.2014.09.108
dx.doi.org/10.1016/j.apsusc.2014.09.108
dx.doi.org/10.1016/j.apsusc.2014.09.108
dx.doi.org/10.1016/j.apsusc.2014.09.108
dx.doi.org/10.1016/j.apsusc.2014.09.108
dx.doi.org/10.1016/j.apsusc.2014.09.108
dx.doi.org/10.1016/j.apsusc.2014.09.108
dx.doi.org/10.1016/j.apsusc.2014.09.108
dx.doi.org/10.1016/j.apsusc.2014.09.108
dx.doi.org/10.1016/j.matlet.2014.12.064
dx.doi.org/10.1016/j.matlet.2014.12.064
dx.doi.org/10.1016/j.matlet.2014.12.064
dx.doi.org/10.1016/j.matlet.2014.12.064
dx.doi.org/10.1016/j.matlet.2014.12.064
dx.doi.org/10.1016/j.matlet.2014.12.064
dx.doi.org/10.1016/j.matlet.2014.12.064
dx.doi.org/10.1016/j.matlet.2014.12.064
dx.doi.org/10.1016/j.matlet.2014.12.064
dx.doi.org/10.1016/j.matlet.2014.12.064
dx.doi.org/10.1016/j.matlet.2014.12.064
dx.doi.org/10.1016/j.snb.2015.09.137
dx.doi.org/10.1016/j.snb.2015.09.137
dx.doi.org/10.1016/j.snb.2015.09.137
dx.doi.org/10.1016/j.snb.2015.09.137
dx.doi.org/10.1016/j.snb.2015.09.137
dx.doi.org/10.1016/j.snb.2015.09.137
dx.doi.org/10.1016/j.snb.2015.09.137
dx.doi.org/10.1016/j.snb.2015.09.137
dx.doi.org/10.1016/j.snb.2015.09.137
dx.doi.org/10.1016/j.snb.2015.09.137
dx.doi.org/10.1016/j.snb.2015.09.137
dx.doi.org/10.1016/j.mssp.2015.10.001
dx.doi.org/10.1016/j.mssp.2015.10.001
dx.doi.org/10.1016/j.mssp.2015.10.001
dx.doi.org/10.1016/j.mssp.2015.10.001
dx.doi.org/10.1016/j.mssp.2015.10.001
dx.doi.org/10.1016/j.mssp.2015.10.001
dx.doi.org/10.1016/j.mssp.2015.10.001
dx.doi.org/10.1016/j.mssp.2015.10.001
dx.doi.org/10.1016/j.mssp.2015.10.001
dx.doi.org/10.1016/j.mssp.2015.10.001
dx.doi.org/10.1016/j.mssp.2015.10.001
dx.doi.org/10.1016/j.snb.2016.02.045
dx.doi.org/10.1016/j.snb.2016.02.045
dx.doi.org/10.1016/j.snb.2016.02.045
dx.doi.org/10.1016/j.snb.2016.02.045
dx.doi.org/10.1016/j.snb.2016.02.045
dx.doi.org/10.1016/j.snb.2016.02.045
dx.doi.org/10.1016/j.snb.2016.02.045
dx.doi.org/10.1016/j.snb.2016.02.045
dx.doi.org/10.1016/j.snb.2016.02.045
dx.doi.org/10.1016/j.snb.2016.02.045
dx.doi.org/10.1016/j.snb.2016.02.045
dx.doi.org/10.1016/j.matlet.2015.12.106
dx.doi.org/10.1016/j.matlet.2015.12.106
dx.doi.org/10.1016/j.matlet.2015.12.106
dx.doi.org/10.1016/j.matlet.2015.12.106
dx.doi.org/10.1016/j.matlet.2015.12.106
dx.doi.org/10.1016/j.matlet.2015.12.106
dx.doi.org/10.1016/j.matlet.2015.12.106
dx.doi.org/10.1016/j.matlet.2015.12.106
dx.doi.org/10.1016/j.matlet.2015.12.106
dx.doi.org/10.1016/j.matlet.2015.12.106
dx.doi.org/10.1016/j.matlet.2015.12.106
dx.doi.org/10.1039/C3NR06809A
dx.doi.org/10.1039/C3NR06809A
dx.doi.org/10.1039/C3NR06809A
dx.doi.org/10.1039/C3NR06809A
dx.doi.org/10.1039/C3NR06809A
dx.doi.org/10.1039/C3NR06809A
dx.doi.org/10.1039/C3NR06809A
dx.doi.org/10.1016/j.snb.2016.05.002
dx.doi.org/10.1016/j.snb.2016.05.002
dx.doi.org/10.1016/j.snb.2016.05.002
dx.doi.org/10.1016/j.snb.2016.05.002
dx.doi.org/10.1016/j.snb.2016.05.002
dx.doi.org/10.1016/j.snb.2016.05.002
dx.doi.org/10.1016/j.snb.2016.05.002
dx.doi.org/10.1016/j.snb.2016.05.002
dx.doi.org/10.1016/j.snb.2016.05.002
dx.doi.org/10.1016/j.snb.2016.05.002
dx.doi.org/10.1016/j.snb.2016.05.002
dx.doi.org/10.1016/j.snb.2016.01.147
dx.doi.org/10.1016/j.snb.2016.01.147
dx.doi.org/10.1016/j.snb.2016.01.147
dx.doi.org/10.1016/j.snb.2016.01.147
dx.doi.org/10.1016/j.snb.2016.01.147
dx.doi.org/10.1016/j.snb.2016.01.147
dx.doi.org/10.1016/j.snb.2016.01.147
dx.doi.org/10.1016/j.snb.2016.01.147
dx.doi.org/10.1016/j.snb.2016.01.147
dx.doi.org/10.1016/j.snb.2016.01.147
dx.doi.org/10.1016/j.snb.2016.01.147
dx.doi.org/10.1016/j.snb.2005.06.055
dx.doi.org/10.1016/j.snb.2005.06.055
dx.doi.org/10.1016/j.snb.2005.06.055
dx.doi.org/10.1016/j.snb.2005.06.055
dx.doi.org/10.1016/j.snb.2005.06.055
dx.doi.org/10.1016/j.snb.2005.06.055
dx.doi.org/10.1016/j.snb.2005.06.055
dx.doi.org/10.1016/j.snb.2005.06.055
dx.doi.org/10.1016/j.snb.2005.06.055
dx.doi.org/10.1016/j.snb.2005.06.055
dx.doi.org/10.1016/j.snb.2005.06.055
dx.doi.org/10.1016/j.snb.2009.02.041
dx.doi.org/10.1016/j.snb.2009.02.041
dx.doi.org/10.1016/j.snb.2009.02.041
dx.doi.org/10.1016/j.snb.2009.02.041
dx.doi.org/10.1016/j.snb.2009.02.041
dx.doi.org/10.1016/j.snb.2009.02.041
dx.doi.org/10.1016/j.snb.2009.02.041
dx.doi.org/10.1016/j.snb.2009.02.041
dx.doi.org/10.1016/j.snb.2009.02.041
dx.doi.org/10.1016/j.snb.2009.02.041
dx.doi.org/10.1016/j.snb.2009.02.041
dx.doi.org/10.1016/j.snb.2014.09.087
dx.doi.org/10.1016/j.snb.2014.09.087
dx.doi.org/10.1016/j.snb.2014.09.087
dx.doi.org/10.1016/j.snb.2014.09.087
dx.doi.org/10.1016/j.snb.2014.09.087
dx.doi.org/10.1016/j.snb.2014.09.087
dx.doi.org/10.1016/j.snb.2014.09.087
dx.doi.org/10.1016/j.snb.2014.09.087
dx.doi.org/10.1016/j.snb.2014.09.087
dx.doi.org/10.1016/j.snb.2014.09.087
dx.doi.org/10.1016/j.snb.2014.09.087
dx.doi.org/10.1016/j.snb.2008.08.036
dx.doi.org/10.1016/j.snb.2008.08.036
dx.doi.org/10.1016/j.snb.2008.08.036
dx.doi.org/10.1016/j.snb.2008.08.036
dx.doi.org/10.1016/j.snb.2008.08.036
dx.doi.org/10.1016/j.snb.2008.08.036
dx.doi.org/10.1016/j.snb.2008.08.036
dx.doi.org/10.1016/j.snb.2008.08.036
dx.doi.org/10.1016/j.snb.2008.08.036
dx.doi.org/10.1016/j.snb.2008.08.036
dx.doi.org/10.1016/j.snb.2008.08.036
dx.doi.org/10.1016/j.jcis.2016.05.040
dx.doi.org/10.1016/j.jcis.2016.05.040
dx.doi.org/10.1016/j.jcis.2016.05.040
dx.doi.org/10.1016/j.jcis.2016.05.040
dx.doi.org/10.1016/j.jcis.2016.05.040
dx.doi.org/10.1016/j.jcis.2016.05.040
dx.doi.org/10.1016/j.jcis.2016.05.040
dx.doi.org/10.1016/j.jcis.2016.05.040
dx.doi.org/10.1016/j.jcis.2016.05.040
dx.doi.org/10.1016/j.jcis.2016.05.040
dx.doi.org/10.1016/j.jcis.2016.05.040
dx.doi.org/10.1016/j.apsusc.2015.01.150
dx.doi.org/10.1016/j.apsusc.2015.01.150
dx.doi.org/10.1016/j.apsusc.2015.01.150
dx.doi.org/10.1016/j.apsusc.2015.01.150
dx.doi.org/10.1016/j.apsusc.2015.01.150
dx.doi.org/10.1016/j.apsusc.2015.01.150
dx.doi.org/10.1016/j.apsusc.2015.01.150
dx.doi.org/10.1016/j.apsusc.2015.01.150
dx.doi.org/10.1016/j.apsusc.2015.01.150
dx.doi.org/10.1016/j.apsusc.2015.01.150
dx.doi.org/10.1016/j.apsusc.2015.01.150
dx.doi.org/10.1021/ac00174a015
dx.doi.org/10.1021/ac00174a015
dx.doi.org/10.1021/ac00174a015
dx.doi.org/10.1021/ac00174a015
dx.doi.org/10.1021/ac00174a015
dx.doi.org/10.1021/ac00174a015
dx.doi.org/10.1021/ac00174a015


ctuat

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

B

D
i
i
t
A
g

Hungarian Academy of Sciences since 2001. Research interest: colloid and interface
chemistry and nanostructured materials. Member of the editorial board of Applied
Clay Science. He has published over 360 papers, 12 book chapters, he is inventor of
over 25 patent applications. The total number of citation of his papers and books is
10000+ and his H index is 50.
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