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Abstract

We discuss joint temporal and contemporaneous aggregation of N independent copies

of strictly stationary INteger-valued AutoRegressive processes of order 1 (INAR(1)) with

random coefficient α ∈ (0, 1) and with idiosyncratic Poisson innovations. Assuming that

α has a density function of the form ψ(x)(1− x)β, x ∈ (0, 1), with limx↑1 ψ(x) = ψ1 ∈
(0,∞), different limits of appropriately centered and scaled aggregated partial sums are

shown to exist for β ∈ (−1, 0), β = 0, β ∈ (0, 1) or β ∈ (1,∞), when taking first

the limit as N → ∞ and then the time scale n → ∞, or vice versa. In fact, we give

a partial solution to an open problem of Pilipauskaitė and Surgailis [23] by replacing the

random-coefficient AR(1) process with a certain randomized INAR(1) process.

1 Introduction

The aggregation problem is concerned with the relationship between individual (micro) behavior

and aggregate (macro) statistics. There exist different types of aggregation. The scheme of

contemporaneous (also called cross-sectional) aggregation of random-coefficient AR(1) models

was firstly proposed by Robinson [28] and Granger [10] in order to obtain the long memory

phenomena in aggregated time series. See also Gonçalves and Gouriéroux [9], Zaffaroni [36],

Oppenheim and Viano [22], Celov et al. [5] and Beran et al. [4] on the aggregation of more

general time-series models with finite variance. Puplinskaitė and Surgailis [26, 27] discussed

aggregation of random-coefficient AR(1) processes with infinite variance and innovations in the

domain of attraction of a stable law. Related problems for some network traffic models were

studied in Willinger et al. [35], Taqqu et al. [33], Gaigalas and Kaj [8] and Dombry and Kaj
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[6], where independent and centered ON/OFF processes are aggregated, in Mikosch et al. [19],

where aggregation of M/G/∞ queues with heavy-tailed activity periods are investigated, in

Pipiras et al. [25], where integrated renewal or renewal-reward processes are considered, or in

Iglói and Terdik [11], where the limit behavior of the aggregate of certain random-coefficient

Ornstein–Uhlenbeck processes is examined. On page 512 in Jirak [13] one can find a lot of

references for papers dealing with the aggregation of continuous time stochastic processes.

The present paper extends some of the results in Pilipauskaitė and Surgailis [23], which

discusses the limit behavior of sums

(1.1) S
(N,n)
t :=

N∑

j=1

⌊nt⌋∑

k=1

X
(j)
k , t ∈ [0,∞), N, n ∈ {1, 2, . . .},

where (X
(j)
k )k∈{0,1,...}, j ∈ {1, 2, . . .}, are independent copies of a stationary random-coefficient

AR(1) process

(1.2) Xk = aXk−1 + εk, k ∈ {1, 2, . . .},

with standardized independent and identically distributed (i.i.d.) innovations (εk)k∈{1,2,...}
having E(ε1) = 0 and Var(ε1) = 1, and a random coefficient a with values in [0, 1), being

independent of (εk)k∈{1,2,...} and admitting a probability density function of the form

(1.3) ψ(x)(1− x)β , x ∈ [0, 1),

where β ∈ (−1,∞) and ψ is an integrable function on [0, 1) having a limit limx↑1 ψ(x) =

ψ1 > 0. Here the distribution of X0 is chosen as the unique stationary distribution of

the model (1.2). Its existence was shown in Puplinskaitė and Surgailis [26, Proposition 1].

We point out that they considered so-called idiosyncratic innovations, i.e., the innovations

(ε
(j)
k )k∈Z+, j ∈ N, belonging to (X

(j)
k )k∈Z+ , j ∈ N, are independent. In [23] they derived

scaling limits of the finite dimensional distributions of (A−1
N,nS

(N,n)
t )t∈[0,∞), where AN,n are

some scaling factors and first N → ∞ and then n → ∞, or vice versa, or both N and n

increase to infinity, possibly with different rates. Very recently, Pilipauskaitė and Surgailis [24]

extended their results in [23] from the case of idiosyncratic innovations to the case of common

innovations, i.e., when (ε
(j)
k )k∈Z+ = (ε

(1)
k )k∈Z+, j ∈ N.

The aim of the present paper is to extend the results of Pilipauskaitė and Surgailis [23,

Theorem 2.1] concerning iterated scaling limits to the case of certain randomized first-order

Integer-valued AutoRegressive (INAR(1)) processes. The theory and application of integer-

valued time series models are rapidly developing and important topics, see, e.g., Steutel and

van Harn [31] and Weiß [34]. The INAR(1) process is among the most fertile integer-valued

time series models, and it was first introduced by McKenzie [18] and Al-Osh and Alzaid [1].

An INAR(1) time series model is a stochastic process (Xk)k∈{0,1,...} satisfying the recursive

equation

(1.4) Xk =

Xk−1∑

j=1

ξk,j + εk, k ∈ {1, 2, . . .},
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where (εk)k∈{1,2,...} are i.i.d. non-negative integer-valued random variables, (ξk,j)k,j∈{1,2,...} are

i.i.d. Bernoulli random variables with mean α ∈ [0, 1], and X0 is a non-negative integer-valued

random variable such that X0, (ξk,j)k,j∈{1,2,...} and (εk)k∈{1,2,...} are independent. By using

the binomial thinning operator α ◦ due to Steutel and van Harn [31], the INAR(1) model in

(1.4) can be written as

(1.5) Xk = α ◦Xk−1 + εk, k ∈ {1, 2, . . .},

which form captures the resemblance with the AR model. We note that an INAR(1) process can

also be considered as a special branching process with immigration having Bernoulli offspring

distribution.

Leonenko et al. [16] introduced the aggregation
∑∞

j=1X
(j) of a sequence of independent

stationary INAR(1) processes X(j), j ∈ N, where X
(j)
k = α(j) ◦X(j)

k−1 + ε
(j)
k , k ∈ Z, j ∈ N.

Under appropriate conditions on α(j), j ∈ N, and on the distributions of ε(j), j ∈ N, they

showed that the process
∑∞

j=1X
(j) is well-defined in L2-sense and it has long memory.

We will consider a certain randomized INAR(1) process (Xk)k∈Z+ with randomized thinning

parameter α, given formally by the recursive equation

(1.6) Xk = α ◦Xk−1 + εk, k ∈ {1, 2, . . .},

where α is a random variable with values in (0, 1) and X0 is some appropriate random vari-

able. This means that, conditionally on α, the process (Xk)k∈Z+ is an INAR(1) process with

thinning parameter α. Conditionally on α, the i.i.d. innovations (εk)k∈{1,2,...} are supposed

to have a Poisson distribution with parameter λ ∈ (0,∞), and the conditional distribution of

the initial value X0 given α is supposed to be the unique stationary distribution, namely, a

Poisson distribution with parameter λ/(1−α). For a rigorous construction of this process, see

Section 4. Here we only note that (Xk)k∈Z+ is a strictly stationary sequence, but it is not even

a Markov chain (so it is not an INAR(1) process) if α is not degenerate, see Appendix A. Let

us also remark that the choice of Poisson-distributed innovations serves a technical purpose.

It allows us to calculate and use the explicit stationary distribution and the joint generator

function given in (2.4). The authors are planning to try releasing this assumption and giving

more general results in future research.

Note that there is another way of randomizing the INAR(1) model (1.5), the so-called

random-coefficient INAR(1) process (RCINAR(1)), proposed by Zheng et al. [37] and Leonenko

et al. [16]. It differs from (1.6), namely, it is a process formally given by the recursive equation

Xk = αk ◦Xk−1 + εk, k ∈ {1, 2, . . .},

where (αk)k∈{1,2,...} is an i.i.d. sequence of random variables with values in [0, 1]. An

RCINAR(1) process can be considered as a special kind of branching processes with immigration

in a random environment, see Key [15], where a rigorous construction is given on the state space

of the so-called genealogical trees.
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In the paper first we examine a strictly stationary INAR(1) process (1.5) with deterministic

thinning and Poisson innovation, and in Section 2 an explicit formula is given for the joint

generator function of (X0, X1, . . . , Xk), k ∈ {0, 1, . . .}. In Section 3 we consider indepen-

dent copies of this stationary INAR(1) process supposing idiosyncratic Poisson innovations.

Applying the natural centering by the expectation, in Propositions 3.1, 3.2 and in Theorem

3.3, we derive scaling limits for the contemporaneously, the temporally and the joint tempo-

rally and contemporaneously aggregated processes, respectively. In Section 4 first we give a

construction of the stationary randomized INAR(1) process (1.6). Considering independent

copies of this randomized INAR(1) process, we discuss the limit behavior of the temporal and

contemporaneous aggregation of these processes, both with centering by the expectation and

by the conditional expectation, see Propositions 4.1–4.4. Then, assuming that the distribution

of α has the form (1.3), we prove iterated limit theorems for the joint temporally and con-

temporaneously aggregated processes in case of both centralizations, see Theorems 4.7–4.13.

As a consequence of our results, we formulate limit theorems with centering by the empirical

mean as well, see Corollary 4.14. Note that we have separate results for the different ranges

of β (namely, β ∈ (−1, 0), β = 0, β ∈ (0, 1) and β ∈ (1,∞)), the different orders of the

iterations, and the different centralizations. The case β = 1 is not covered in this paper, nor

in Pilipauskaitė and Surgailis [23] for the random coefficient AR(1) processes. We discuss this

case for both models in Nedényi and Pap [21]. Section 5 contains the proofs. In the appendices

we discuss the non-Markov property of the randomized INAR(1) model, some approximations

of the exponential function and some of its integrals, and an integral representation of the

fractional Brownian motion due to Pilipauskaitė and Surgailis [23]. We consider three kinds

of centralizations (by the conditional and the unconditional expectations and by the empirical

mean). In Pilipauskaitė and Surgailis [23] centralization does not appear since they aggregate

centered processes. In Jirak [13] the role of centralizations by the conditional and the uncondi-

tional expectations is discussed, where an asymptotic theory of aggregated linear processes is

developed, and the limit distribution of a large class of linear and nonlinear functionals of such

processes are determined.

All in all, we have similar limit theorems for randomized INAR(1) processes that Pili-

pauskaitė and Surgailis [23, Theorem 2.1] have for random coefficients AR(1) processes. On

page 1014, Pilipauskaitė and Surgailis [23] formulated an open problem that concerns possible

existence and description of limit distribution of the double sum (1.1) for general i.i.d. processes

(X
(j)
t )t∈R+ , j ∈ N. We solve this open problem for some randomized INAR(1) processes. Since

INAR(1) processes are special branching processes with immigration, based on our results, later

on, one may proceed with general branching processes with immigration. The techniques of

our proofs differ from those of Pilipauskaitė and Surgailis [23] in many cases, for a somewhat

detailed comparison, see the beginning of Section 5.
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2 Generator function of finite-dimensional distributions

of Galton–Watson branching processes with immigra-

tion

Let Z+, N, R, R+, and C denote the set of non-negative integers, positive integers, real

numbers, non-negative real numbers, and complex numbers, respectively. The Borel σ-field

on R is denoted by B(R). Every random variable in this section will be defined on a fixed

probability space (Ω,A,P).
For each k, j ∈ Z+, the number of individuals in the kth generation will be denoted

by Xk, the number of offsprings produced by the jth individual belonging to the (k − 1)th

generation will be denoted by ξk,j, and the number of immigrants in the kth generation will

be denoted by εk. Then we have

Xk =

Xk−1∑

j=1

ξk,j + εk, k ∈ N,

where we define
∑0

j=1 := 0. Here
{
X0, ξk,j, εk : k, j ∈ N

}
are supposed to be independent

nonnegative integer-valued random variables. Moreover, {ξk,j : k, j ∈ N} and {εk : k ∈ N}
are supposed to consist of identically distributed random variables, respectively.

Let us introduce the generator functions

Fk(z) := E(zXk), k ∈ Z+, G(z) := E(zξ1,1), H(z) := E(zε1)

for z ∈ D := {z ∈ C : |z| 6 1}. First we observe that for each k ∈ N, the conditional

generator function E(zXk
k |Xk−1) of Xk given Xk−1 takes the form

(2.1) E(zXk
k |Xk−1) = E

(
z
∑Xk−1

j=1 ξk,j+εk
k

∣∣∣Xk−1

)
= E(zεkk )

Xk−1∏

j=1

E(z
ξk,j
k ) = H(zk)G(zk)

Xk−1

for zk ∈ D, where we define
∏0

j=1 := 1. The aim of the following discussion is to calculate

the joint generator functions of the finite dimensional distributions of (Xk)k∈Z+ . Using (2.1),

we also have the recursion

Fk(z) = E(E(zXk |Xk−1)) = E(H(z)G(z)Xk−1) = H(z)E
(
G(z)Xk−1

)
= H(z)Fk−1(G(z))

for z ∈ D and k ∈ N. Put G(0)(z) := z and G(1)(z) := G(z) for z ∈ D, and introduce

the iterates G(k+1)(z) := G(k)(G(z)), z ∈ D, k ∈ N. The above recursion yields

Fk(z) = H(z)H(G(z)) · · ·H(G(k−1)(z))F0(G(k)(z)) = F0(G(k)(z))
k−1∏

j=0

H(G(j)(z))

for z ∈ D and k ∈ N. Supposing that E(ξ1,1) = G′(1−) < 1, 0 < P(ξ1,1 = 0) < 1,

0 < P(ξ1,1 = 1) and 0 < P(ε1 = 0) < 1, the Markov chain (Xk)k∈Z+ is irreducible and
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aperiodic. Further, it is ergodic (positive recurrent) if and only if
∑∞

ℓ=1 log(ℓ)P(ε1 = ℓ) < ∞,

and in this case the unique stationary distribution has the generator function

F̃ (z) =

∞∏

j=0

H(G(j)(z)), z ∈ D,

see, e.g., Seneta [29, Chapter 5] and Foster and Williamson [7, Theorem, part (iii)].

Consider the special case with Bernoulli offspring and Poisson immigration distributions,

namely,

P(ξ1,1 = 1) = α = 1− P(ξ1,1 = 0),

P(ε1 = ℓ) =
λℓ

ℓ!
e−λ, ℓ ∈ Z+,

(2.2)

with α ∈ (0, 1) and λ ∈ (0,∞). With the special choices (2.2), the Galton–Watson process

with immigration (Xk)k∈Z+ is an INAR(1) process with Poisson innovations. Then

G(z) = 1− α + αz, H(z) =

∞∑

ℓ=0

zℓλℓ

ℓ!
e−λ = eλ(z−1), z ∈ C,

hence

G(j)(z) = 1− αj + αjz, z ∈ C, j ∈ N.

Indeed, by induction, for all j ∈ Z+,

G(j+1)(z) = G(G(j)(z)) = αG(j)(z) + 1− α = α(1− αj + αjz) + 1− α = 1− αj+1 + αj+1z.

Since E(ξ1,1) = G′(1−) = α ∈ (0, 1), P(ξ1,1 = 0) = 1 − α ∈ (0, 1), P(ξ1,1 = 1) = α > 0,

P(ε1 = 0) = e−λ ∈ (0, 1), and

∞∑

ℓ=1

log(ℓ)
λℓ

ℓ!
e−λ 6

∞∑

ℓ=1

ℓ
λℓ

ℓ!
e−λ = E(ε1) = λ <∞,

the Markov chain (Xk)k∈Z+ has a unique stationary distribution admitting a generator function

of the form

F̃ (z) =
∞∏

j=0

eα
jλ(z−1) = e(1−α)

−1λ(z−1), z ∈ C,

thus it is a Poisson distribution with expectation (1− α)−1λ.

Suppose now that the initial distribution is a Poisson distribution with expectation (1 −
α)−1λ, hence the Markov chain (Xk)k∈Z+ is strictly stationary and

(2.3) F0(z0) = E(zX0
0 ) = e(1−α)

−1λ(z0−1), z0 ∈ C.

By induction, one can derive the following result, formulae for the joint generator function of

(X0, X1, . . . , Xk), k ∈ Z+.
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2.1 Proposition. Under (2.2) and supposing that the distribution of X0 is Poisson distribu-

tion with expectation (1 − α)−1λ, the joint generator function of (X0, X1, . . . , Xk), k ∈ Z+,

takes the form

(2.4)

F0,...,k(z0, . . . , zk) := E(zX0
0 zX1

1 · · · zXk
k )

= exp

{
λ

1− α

∑

06i6j6k

αj−i(zi − 1)zi+1 · · · zj−1(zj − 1)

}

for all k ∈ N and z0, . . . , zk ∈ C, where, for i = j, the term in the sum above is zi − 1.

Alternatively, one can write up the joint generator function as

F0,...,k(z0, . . . , zk) = exp

{
λ
∑

06i6j6k

(1− α)Ki,j,kαj−i(zizi+1 · · · zj − 1)

}
,(2.5)

where

Ki,j,k :=





−1 if i = 0 and j = k,

0 if i = 0 and 0 6 j 6 k − 1,

0 if 1 6 i 6 k and j = k,

1 if 1 6 i 6 j 6 k − 1.

2.2 Remark. Under the conditions of Proposition 2.1, the distribution of (X0, X1) can be

represented using independent Poisson distributed random variables. Namely, if U , V and W

are independent Poisson distributed random variables with parameters λ(1 − α)−1α, λ and

λ, respectively, then (X0, X1)
D
= (U + V, U +W ). Indeed, for all z0, z1 ∈ C,

E(zU+V
0 zU+W

1 ) = E((z0z1)
UzV0 z

W
1 ) = E((z0z1)

U)E(zV0 )E(z
W
1 )

= eλ(1−α)
−1α(z0z1−1)eλ(z0−1)eλ(z1−1),

as desired. Further, note that formula (2.5) shows that (X0, . . . , Xk) has a (k + 1)-variate

Poisson distribution, see, e.g., Johnson et al. [14, (37.85)]. ✷

3 Iterated aggregation of INAR(1) processes with Pois-

son innovations

Let (Xk)k∈Z+ be an INAR(1) process with offspring and immigration distributions given in

(2.2) and with initial distribution given in (2.3), hence the process is strictly stationary. Let

X(j) = (X
(j)
k )k∈Z+ , j ∈ N, be a sequence of independent copies of the stationary INAR(1)

process (Xk)k∈Z+.

First we consider a simple aggregation procedure. For each N ∈ N, consider the stochastic

process S(N) = (S
(N)
k )k∈Z+ given by

(3.1) S
(N)
k :=

N∑

j=1

(X
(j)
k − E(X

(j)
k )), k ∈ Z+,

7



where E(X
(j)
k ) = λ(1 − α)−1, k ∈ Z+, j ∈ N, since the stationary distribution is Poisson

with expectation (1 − α)−1λ. We will use
Df−→ or Df-lim for the weak convergence of the

finite dimensional distributions, and
D−→ for the weak convergence of stochastic processes

with sample paths in D(R+,R), where D(R+,R) denotes the space of real-valued càdlàg

functions defined on R+. The almost sure convergence is denoted by
a.s.−→.

3.1 Proposition. We have

N− 1
2S(N) Df−→ X as N → ∞,

where X = (Xk)k∈Z+ is a stationary Gaussian process with zero mean and covariances

E(X0Xk) = Cov(X0, Xk) =
λαk

1− α
, k ∈ Z+.(3.2)

3.2 Proposition. We have

(
n− 1

2

⌊nt⌋∑

k=1

S
(1)
k

)

t∈R+

=

(
n− 1

2

⌊nt⌋∑

k=1

(X
(1)
k − E(X

(1)
k ))

)

t∈R+

D−→
√
λ(1 + α)

1− α
B

as n→ ∞, where B = (Bt)t∈R+ is a standard Brownian motion.

Note that Propositions 3.1 and 3.2 are about the scaling of the space-aggregated process

S(N) and the time-aggregated process
(∑⌊nt⌋

k=1 S
(1)
k

)
t∈R+

, respectively.

For each N, n ∈ N, consider the stochastic process S(N,n) = (S
(N,n)
t )t∈R+ given by

(3.3) S
(N,n)
t :=

N∑

j=1

⌊nt⌋∑

k=1

(X
(j)
k − E(X

(j)
k )), t ∈ R+.

3.3 Theorem. We have

Df- lim
N→∞

Df- lim
n→∞

(nN)−
1
2S(N,n) = Df- lim

n→∞
Df- lim

N→∞
(nN)−

1
2S(N,n) =

√
λ(1 + α)

1− α
B,

where B = (Bt)t∈R+ is a standard Brownian motion.

4 Iterated aggregation of randomized INAR(1) pro-

cesses with Poisson innovations

Let λ ∈ (0,∞), and let Pα be a probability measure on (0, 1). Then there exist a

probability space (Ω,A,P), a random variable α with distribution Pα and random variables

8



{X0, ξk,j, εk : k, j ∈ N}, conditionally independent given α on (Ω,A,P) such that

P(ξk,j = 1 |α) = α = 1− P(ξk,j = 0 |α), k, j ∈ N,(4.1)

P(εk = ℓ |α) = λℓ

ℓ!
e−λ, ℓ ∈ Z+, k ∈ N,(4.2)

P(X0 = ℓ |α) = λℓ

ℓ!(1− α)ℓ
e−(1−α)−1λ, ℓ ∈ Z+.(4.3)

(Note that the conditional distribution of εk does not depend on α.) Indeed, for each

n ∈ N, by Ionescu Tulcea’s theorem (see, e.g., Shiryaev [30, II. § 9, Theorem 2]), there exist

a probability space (Ωn,An,Pn) and random variables α(n), X
(n)
0 , ε

(n)
k and ξ

(n)
k,j for

k, j ∈ {1, . . . , n} on (Ωn,An,Pn) such that

Pn(α
(n) ∈ B, X

(n)
0 = x0, ε

(n)
k = ℓk, ξ

(n)
k,j = xk,j for all k, j ∈ {1, . . . , n})

=

∫

B

pn
(
a, x0, (ℓk)

n
k=1, (xk,j)

n
k,j=1

)
Pα(da)

for all B ∈ B(R), x0 ∈ Z+, (ℓk)
n
k=1 ∈ Zn+, (xk,j)

n
k,j=1 ∈ {0, 1}n×n, with

pn
(
a, x0, (ℓk)

n
k=1, (xk,j)

n
k,j=1

)
:=

λx0

x0!(1− a)x0
e−(1−a)−1λ

n∏

k=1

λℓk

ℓk!
e−λ

n∏

k,j=1

axk,j (1− a)1−xk,j ,

since the mapping (0, 1) ∋ a 7→ pn
(
a, x0, (ℓk)

n
k=1, (xk,j)

n
k,j=1

)
is Borel measurable for all

x0 ∈ Z+, (ℓk)
n
k=1 ∈ Zn+, (xk,j)

n
k,j=1 ∈ {0, 1}n×n, and

∑{
pn
(
a, x0, (ℓk)

n
k=1, (xk,j)

n
k,j=1

)
: x0 ∈ Z+, (ℓk)

n
k=1 ∈ Z

n
+, (xk,j)

n
k,j=1 ∈ {0, 1}n×n

}
= 1

for all a ∈ (0, 1). Then the Kolmogorov consistency theorem implies the existence of a

probability space (Ω,A,P) and random variables α, X0, εk and ξk,j for k, j ∈ N on

(Ω,A,P) with the desired properties (4.1), (4.2) and (4.3), since for all n ∈ N, we have

∑{
pn+1

(
a, x0, (ℓk)

n+1
k=1, (xk,j)

n+1
k,j=1

)

: ℓn+1 ∈ Z+, (xn+1,j)
n
j=1, (xk,n+1)

n
k=1 ∈ {0, 1}n, xn+1,n+1 ∈ {0, 1}

}

= pn
(
a, x0, (ℓk)

n
k=1, (xk,j)

n
k,j=1

)
.

Define a process (Xk)k∈Z+ by

Xk =

Xk−1∑

j=1

ξk,j + εk, k ∈ N.

By Section 2, conditionally on α, the process (Xk)k∈Z+ is a strictly stationary INAR(1)

process with thinning parameter α and with Poisson innovations. Moreover, by the law of
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total probability, it is also (unconditionally) strictly stationary but it is not a Markov chain (so

it is not an INAR(1) process) if α is not degenerate, see Appendix A. The process (Xk)k∈Z+

can be called a randomized INAR(1) process with Poisson innovations, and the distribution of

α is the so-called mixing distribution of the model. The conditional generator function of X0

given α ∈ (0, 1) has the form

F0(z0 |α) := E(zX0
0 |α) = e(1−α)

−1λ(z0−1), z0 ∈ C,

and the conditional expectation of X0 given α is E(X0 |α) = (1− α)−1λ. Here and in the

sequel conditional expectations like E(zX0
0 |α) or E(X0 |α) are meant in the generalized sense,

see, e.g., in Stroock [32, § 5.1.1]. The joint conditional generator function of X0, X1, . . . , Xk

given α will be denoted by F0,...,k(z0, . . . , zk |α), z0, . . . , zk ∈ C.

Let α(j), j ∈ N, be a sequence of independent copies of the random variable α, and

let (X
(j)
k )k∈Z+ , j ∈ N, be a sequence of independent copies of the process (Xk)k∈Z+ with

idiosyncratic innovations (i.e., the innovations (ε
(j)
k )k∈Z+, j ∈ N, belonging to (X

(j)
k )k∈Z+,

j ∈ N, are independent) such that (X
(j)
k )k∈Z+ conditionally on α(j) is a strictly stationary

INAR(1) process with thinning parameter α(j) and with Poisson innovations for all j ∈ N.

First we consider a simple aggregation procedure. For each N ∈ N, consider the stochastic

process S̃(N) = (S̃
(N)
k )k∈Z+ given by

S̃
(N)
k :=

N∑

j=1

(X
(j)
k − E(X

(j)
k |α(j))) =

N∑

j=1

(
X

(j)
k − λ

1− α(j)

)
, k ∈ Z+.

4.1 Proposition. If E
(

1
1−α
)
<∞, then

N− 1
2 S̃(N) Df−→ Ỹ as N → ∞,

where (Ỹk)k∈Z+ is a stationary Gaussian process with zero mean and covariances

(4.4) E(Ỹ0Ỹk) = Cov

(
X0 −

λ

1− α
,Xk −

λ

1− α

)
= λE

( αk

1− α

)
, k ∈ Z+.

4.2 Proposition. We have

(
n− 1

2

⌊nt⌋∑

k=1

S̃
(1)
k

)

t∈R+

=

(
n− 1

2

⌊nt⌋∑

k=1

(X
(1)
k − E(X

(1)
k |α(1)))

)

t∈R+

Df−→
√
λ(1 + α)

1− α
B

as n→ ∞, where B = (Bt)t∈R+ is a standard Brownian motion, independent of α.

In the next two propositions, which are counterparts of Propositions 3.1 and 3.2, we point

out that the usual centralization leads to limit theorems similar to Propositions 4.1 and 4.2,

but with an occasionally different scaling and with a different limit process. We use again

the notation S(N) = (S
(N)
k )k∈Z+ given in (3.1) for the simple aggregation (with the usual

centralization) of the randomized process.
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4.3 Proposition. If E
(

1
(1−α)2

)
<∞, then

N− 1
2S(N) Df−→ Y as N → ∞,

where Y = (Yk)k∈Z+ is a stationary Gaussian process with zero mean and covariances

E(Y0Yk) = Cov(X0, Xk) = λE
( αk

1− α

)
+ λ2Var

(
1

1− α

)
, k ∈ Z+.

4.4 Proposition. If E
(

1
1−α
)
<∞, then

(
n−1

⌊nt⌋∑

k=1

S
(1)
k

)

t∈R+

=

(
n−1

⌊nt⌋∑

k=1

(X
(1)
k − E(X

(1)
k ))

)

t∈R+

Df−→
((

λ

1− α
− E

(
λ

1− α

))
t

)

t∈R+

as n→ ∞.

In Proposition 4.4 the limit process is simply a line with a random slope.

In the forthcoming Theorems 4.7–4.13, we assume that the distribution of the random

variable α, i.e., the mixing distribution, has a probability density of the form

(4.5) ψ(x)(1− x)β, x ∈ (0, 1),

where ψ is a function on (0, 1) having a limit limx↑1 ψ(x) = ψ1 ∈ (0,∞). Note that

necessarily β ∈ (−1,∞) (otherwise
∫ 1

0
ψ(x)(1−x)β dx = ∞), the function (0, 1) ∋ x 7→ ψ(x)

is integrable on (0, 1), and the function (0, 1) ∋ x 7→ ψ(x)(1−x)β is regularly varying at the

point 1 (i.e., (0,∞) ∋ x 7→ ψ(1 − 1
x
) x−β is regularly varying at infinity). Further, in case of

ψ(x) = Γ(a+β+2)
Γ(a+1)Γ(β+1)

xa, x ∈ (0, 1), with some a ∈ (−1,∞), the random variable α is Beta

distributed with parameters a + 1 and β + 1. The special case of Beta mixing distribution

is an important one from the historical point of view, since the Nobel prize winner Clive W. J.

Granger used Beta distribution as a mixing distribution for random coefficient AR(1) processes,

see Granger [10].

4.5 Remark. Under the condition (4.5), for each ℓ ∈ N, the expectation E
(

1
(1−α)ℓ

)
is

finite if and only if β > ℓ − 1. Indeed, if β > ℓ − 1, then, by choosing ε ∈ (0, 1) with

supa∈(1−ε,1) ψ(a) 6 2ψ1, we have E
(

1
(1−α)ℓ

)
= I1(ε) + I2(ε), where

I1(ε) :=

∫ 1−ε

0

ψ(a)(1− a)β−ℓ da 6 εβ−ℓ
∫ 1−ε

0

ψ(a) da <∞,

I2(ε) :=

∫ 1

1−ε
ψ(a)(1− a)β−ℓ da 6 2ψ1

∫ 1

1−ε
(1− a)β−ℓ da =

2ψ1ε
β−ℓ+1

β − ℓ+ 1
<∞.

Conversely, if β 6 ℓ−1, then, by choosing ε ∈ (0, 1) with supa∈(1−ε,1) ψ(a) > ψ1/2, we have

E

(
1

(1− α)ℓ

)
>

∫ 1

1−ε
ψ(a)(1− a)β−ℓ da >

ψ1

2

∫ 1

1−ε
(1− a)β−ℓ da = ∞.
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This means that in case of β ∈ (−1, 0], the processes S(N,n) = (S
(N,n)
t )t∈R+ , N, n ∈ N, given

in (3.3) are not defined for the randomized INAR(1) process introduced in this section with

mixing distribution given in (4.5). Moreover, the Propositions 4.1, 4.2, 4.3 and 4.4 are valid in

case of β > 0, β > −1, β > 1 and β > 0, respectively. ✷

For each N, n ∈ N, consider the stochastic process S̃(N,n) = (S̃
(N,n)
t )t∈R+ given by

S̃
(N,n)
t :=

N∑

j=1

⌊nt⌋∑

k=1

(X
(j)
k − E(X

(j)
k |α(j))), t ∈ R+.

4.6 Remark. If β > 0, then the covariances of the strictly stationary process (Xk −
E(Xk |α))k∈Z+ = (Xk − λ

1−α)k∈Z+ exist and take the form

Cov
(
X0 − E(X0 |α), Xk − E(Xk |α)

)
= E

(
λαk

1− α

)
, k ∈ Z+,

see (5.3). Further,

∞∑

k=0

∣∣∣Cov(X0 − E(X0 |α), Xk − E(Xk |α))
∣∣∣ =

∞∑

k=0

E

(
λαk

1− α

)
= λE

(
1

1− α

∞∑

k=0

αk

)

= λE

(
1

(1− α)2

)
,

which is finite if and only if β > 1, see Remark 4.5. This means that the strictly stationary

process (Xk − E(Xk |α))k∈Z+ has short memory (i.e., it has summable covariances) if β > 1,

and long memory if β ∈ (0, 1] (i.e., it has non-summable covariances). ✷

For β ∈ (0, 2), let (B1−β
2
(t))t∈R+ denote a fractional Brownian motion with parameter

1− β/2, that is a Gaussian process with zero mean and covariance function

Cov(B1−β
2
(t1),B1−β

2
(t2)) =

t2−β1 + t2−β2 − |t2 − t1|2−β
2

, t1, t2 ∈ R+.(4.6)

In Appendix C we recall an integral representation of the fractional Brownian motion

(B1−β
2
(t))t∈R+ due to Pilipauskaitė and Surgailis [23] in order to connect our forthcoming

results with the ones in Pilipauskaitė and Surgailis [23] and in Puplinskaitė and Surgailis [26],

[27].

The next three results are limit theorems for appropriately scaled versions of S̃(N,n), first

taking the limit N → ∞ and then n→ ∞ in the case β ∈ (−1, 1), which are counterparts

of (2.7), (2.8) and (2.9) of Theorem 2.1 in Pilipauskaitė and Surgailis [23], respectively.

4.7 Theorem. If β ∈ (0, 1), then

Df- lim
n→∞

Df- lim
N→∞

n−1+β
2N− 1

2 S̃(N,n) =

√
2λψ1Γ(β)

(2− β)(1− β)
B1−β

2
.
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4.8 Theorem. If β ∈ (−1, 0), then

Df- lim
n→∞

Df- lim
N→∞

n−1N
− 1

2(1+β) S̃(N,n) = (V2(1+β)t)t∈R+ ,

where V2(1+β) is a symmetric 2(1 + β)-stable random variable (not depending on t) with

characteristic function

E(eiθV2(1+β)) = e−Kβ |θ|2(1+β)

, θ ∈ R,

where

Kβ := ψ1

(
λ

2

)1+β
Γ(−β)
1 + β

.

4.9 Theorem. If β = 0, then

Df- lim
n→∞

Df- lim
N→∞

n−1(N logN)−
1
2 S̃(N,n) = (Wλψ1t)t∈R+ ,

where Wλψ1 is a normally distributed random variable with mean zero and with variance λψ1.

The next result is a limit theorem for an appropriately scaled version of S̃(N,n), first taking

the limit n→ ∞ and then N → ∞ in the case β ∈ (−1, 1), which is a counterpart of (2.10)

of Theorem 2.1 in Pilipauskaitė and Surgailis [23].

4.10 Theorem. If β ∈ (−1, 1), then

Df- lim
N→∞

Df- lim
n→∞

N− 1
1+βn− 1

2 S̃(N,n) = Y1+β,

where Y1+β =
(
Y1+β(t) :=

√
Y(1+β)/2Bt

)
t∈R+

is a (1 + β)-stable Lévy process. Here Y(1+β)/2

is a positive 1+β
2
-stable random variable with Laplace transform E(e−θY(1+β)/2) = e−kβθ

1+β
2 ,

θ ∈ R+, and with characteristic function

E(eiθY(1+β)/2) = exp
{
−kβ |θ|

1+β
2 e−i sign(θ)

π(1+β)
4

}
, θ ∈ R,

where

kβ :=
(2λ)

1+β
2 ψ1

1 + β
Γ

(
1− β

2

)
,

and (Bt)t∈R+ is an independent standard Wiener process.

Next we show an iterated scaling limit theorem where the order of the iteration can be

arbitrary in the case β ∈ (1,∞), which is a counterpart of Theorem 2.3 in Pilipauskaitė and

Surgailis [23].

4.11 Theorem. If β ∈ (1,∞), then

Df- lim
n→∞

Df- lim
N→∞

(nN)−
1
2 S̃(N,n) = Df- lim

N→∞
Df- lim

n→∞
(nN)−

1
2 S̃(N,n) = σB,

where σ2 := λE((1 + α)(1− α)−2) and (Bt)t∈R+ is a standard Wiener process.
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By Remark 4.5, if β > 1, then E
(

1
(1−α)2

)
< ∞, and hence σ2 < ∞, where σ2 is given

in Theorem 4.11.

In the next theorems we consider the usual centralization with E(X
(j)
k ) in the cases β ∈

(0, 1) and β > 1. These are the counterparts of Theorems 4.7, 4.10 and 4.11. Recall that, due

to Remark 4.5, the expectation E(X0) = E
(

λ
1−α
)

is finite if and only if β > 0, so Theorems

4.8 and 4.9 can not have counterparts in this sense.

4.12 Theorem. If β ∈ (0, 1), then

Df- lim
n→∞

Df- lim
N→∞

n−1N− 1
1+βS(N,n) = Df- lim

N→∞
Df- lim

n→∞
n−1N− 1

1+βS(N,n) =
(
Z1+β t

)
t∈R+

,

where Z1+β is a (1 + β)-stable random variable with characteristic function E(eiθZ1+β) =

e−|θ|1+βωβ(θ), θ ∈ R, where

ωβ(θ) :=
ψ1Γ(1− β)λ1+β

−β(1 + β)
e−iπ sign(θ)(1+β)/2, θ ∈ R.

4.13 Theorem. If β ∈ (1,∞), then

Df- lim
n→∞

Df- lim
N→∞

n−1N− 1
2S(N,n) = Df- lim

N→∞
Df- lim

n→∞
n−1N− 1

2S(N,n) = (Wλ2 Var((1−α)−1) t)t∈R+ ,

where Wλ2 Var((1−α)−1) is a normally distributed random variable with mean zero and with

variance λ2Var((1− α)−1).

In case of Theorems 4.8, 4.9, 4.12 and 4.13 the limit processes are lines with random slopes.

We point out that the processes of doubly indexed partial sums, S(N,n) and S̃(N,n) contain

the expected or conditional expected values of the processes X(j), j ∈ N. Therefore, in a

statistical testing, they could not be used directly. So we consider a similar process

Ŝ
(N,n)
t :=

N∑

j=1

⌊nt⌋∑

k=1

[
X

(j)
k −

∑n
ℓ=1X

(j)
ℓ

n

]
, t ∈ R+,

which does not require the knowledge of the expectation or conditional expectation of the

processes X(j), j ∈ N. Note that the summands in Ŝ
(N,n)
t have 0 conditional means with

respect to α, so we do not need any additional centering. Moreover, Ŝ(N,n) is related to the

two previously examined processes in the following way: in case of β ∈ (0,∞) (which ensures

the existence of E(X
(j)
k ), k ∈ Z+), we have

Ŝ
(N,n)
t =

N∑

j=1

⌊nt⌋∑

k=1

[
X

(j)
k − E(X

(j)
k )−

∑n
ℓ=1(X

(j)
ℓ − E(X

(j)
ℓ ))

n

]
= S

(N,n)
t − ⌊nt⌋

n
S
(N,n)
1 ,

and in case of β ∈ (−1,∞),

Ŝ
(N,n)
t =

N∑

j=1

⌊nt⌋∑

k=1

[
X

(j)
k − E(X

(j)
k |α(j))−

∑n
ℓ=1(X

(j)
ℓ − E(X

(j)
ℓ |α(j)))

n

]
= S̃

(N,n)
t − ⌊nt⌋

n
S̃
(N,n)
1

for every t ∈ R+. Therefore, by Theorem 4.7, Theorem 4.10, and Theorem 4.11, using

Slutsky’s lemma, the following limit theorems hold.

14



4.14 Corollary. If β ∈ (0, 1), then

Df- lim
n→∞

Df- lim
N→∞

n−1+β
2N− 1

2 Ŝ(N,n) =

√
2λψ1Γ(β)

(2− β)(1− β)

(
B1−β

2
(t)− tB1−β

2
(1)
)
t∈R+

,

where the process B1−β
2

is given by (4.6).

If β ∈ (−1, 1), then

Df- lim
N→∞

Df- lim
n→∞

N− 1
1+βn− 1

2 Ŝ(N,n) = (Y1+β(t)− tY1+β(1))t∈R+
,

where the process Y1+β is given in Theorem 4.10.

If β ∈ (1,∞), then

Df- lim
n→∞

Df- lim
N→∞

(nN)−
1
2 Ŝ(N,n) = Df- lim

N→∞
Df- lim

n→∞
(nN)−

1
2 Ŝ(N,n) = σ(Bt − tB1)t∈R+ ,

where σ2 and the process B are given in Theorem 4.11.

In Corollary 4.14, the limit processes restricted on the time interval [0, 1] are bridges in

the sense that they take the same value (namely, 0) at the time points 0 and 1, and especially,

in case of β ∈ (1,∞), it is a Wiener bridge. We note that no counterparts appear for the rest

of the theorems because in those cases the limit processes are lines with random slopes, which

result the constant zero process in this alternative case. In case of β ∈ (−1, 0], by applying

some smaller scaling factors, one could try to achieve a non-degenerate weak limit of Ŝ(N,n)

by first taking the limit N → ∞ and then that of n→ ∞.

5 Proofs

Theorem 4.7 is a counterpart of (2.7) of Theorem 2.1 in Pilipauskaitė and Surgailis [23]. We will

present two proofs of Theorem 4.7, and we call the attention that both proofs are completely

different from the proof of (2.7) in Theorem 2.1 in Pilipauskaitė and Surgailis [23] (suspecting

also that their result in question might be proved by our method as well). Theorems 4.8 and

4.9 are counterparts of (2.8) and (2.9) of Theorem 2.1 in Pilipauskaitė and Surgailis [23]. The

proofs of these theorems use the same technique, namely, expansions of characteristic functions,

and we provide all the technical details. Theorem 4.10 is a counterpart of (2.10) of Theorem 2.1

in Pilipauskaitė and Surgailis [23]. We give two proofs of Theorem 4.10: the first one is based

on expansions of characteristic functions (as the proof of (2.10) of Theorem 2.1 in Pilipauskaitė

and Surgailis [23]), the second one reduces to show that λ(1+α)
(1−α)2 belongs to the domain of normal

attraction of the 1+β
2
-stable law of Y 1+β

2
. Theorem 4.11 is a counterpart of Theorem 2.3 in

Pilipauskaitė and Surgailis [23]. The proof of Theorem 4.11 is based on the multidimensional

central limit theorem and checking convergence of covariances of some Gaussian processes.

The notations O(1) and |O(1)| stand for a possibly complex and respectively real sequence

(ak)k∈N that is bounded and can only depend on the parameters λ, ψ1, β, and on some fixed
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m ∈ N and θ1, . . . , θm ∈ R. Further, we call the attention that several O(1)-s (respectively

|O(1)|-s) in the same formula do not necessarily mean the same bounded sequence.

Proof of Proposition 2.1. First we prove (2.4) by induction. Note that by (2.3) the statement

holds for k = 0. We suppose that it holds for 0, . . . , k, and show that it is also true for k+1.

Using (2.1) it is easy to see that

F0,...,k,k+1(z0, . . . , zk, zk+1) = E

(
zX0
0 · · · zXk

k z
Xk+1

k+1

)

= E

(
zX0
0 · · · zXk

k E

(
z
Xk+1

k+1 |X0, . . . , Xk

))
= E

(
zX0
0 · · · zXk

k E

(
z
Xk+1

k+1 |Xk

))

= E

(
zX0
0 · · · zXk

k eλ(zk+1−1)(1− α+ αzk+1)
Xk

)
.

On the one hand, for any z0, . . . , zk+1 ∈ C, by the assumption of the induction,

F0,...,k,k+1(z0, . . . , zk, zk+1) = eλ(zk+1−1)F0,...,k(z0, . . . , zk−1, zk(1− α+ αzk+1))

= exp

{
λ

1− α

[
(1− α)(zk+1 − 1) +

∑

06i6j6k−1

αj−i(zi − 1)zi+1 · · · zj−1(zj − 1)

+ Sum1 + zk(1− α+ αzk+1)− 1

]}
,

with

Sum1 :=
∑

06i6k−1

αk−i(zi − 1)zi+1 · · · zk−1[zk(1− α+ αzk+1)− 1].

On the other hand, the right hand side of (2.4) for k + 1 has the form

exp

{
λ

1− α

[
∑

06i6j6k−1

αj−i(zi − 1)zi+1 · · · zj−1(zj − 1) + Sum2 + Sum3

]}
,

where

Sum2 =
∑

06i6k

αk−i(zi − 1)zi+1 · · · zk−1(zk − 1)

= (zk − 1) +
∑

06i6k−1

αk−i(zi − 1)zi+1 · · · zk−1(zk − 1),

and

Sum3 =
∑

06i6k+1

αk+1−i(zi − 1)zi+1 · · · zk(zk+1 − 1)

= (zk+1 − 1) + α(zk − 1)(zk+1 − 1) +
∑

06i6k−1

αk+1−i(zi − 1)zi+1 · · · zk(zk+1 − 1).

Since

Sum1 =
∑

06i6k−1

αk−i(zi − 1)zi+1 · · · zk−1(zk − 1) +
∑

06i6k−1

αk+1−i(zi − 1)zi+1 · · · zk(zk+1 − 1),
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in order to show (2.4) for k + 1, it is enough to check that

(1− α)(zk+1 − 1) + zk(1− α + αzk+1)− 1 = (zk − 1) + (zk+1 − 1) + α(zk − 1)(zk+1 − 1),

which holds trivially.

Now we prove (2.5). In formula (2.4), for fixed indices 0 6 i 6 j 6 k the term in the sum

gives

(zi − 1)zi+1 · · · zj−1(zj − 1)

= (zi · · · zj − 1)− (zi · · · zj−1 − 1)− (zi+1 · · · zj − 1) + (zi+1 · · · zj−1 − 1),

meaning that the sum consists of similar terms as in (2.5). We only have to show that the

coefficients coincide in the formulas (2.5) and (2.4). In (2.5) the coefficient of zi · · · zj − 1 is

λ(1 − α)Ki,j,kαj−i. In (2.4) this term may appear multiple times, depending on the indices i

and j. If i = 0 and j = k, then it only appears once, with coefficient λαj−i/(1− α), that

is the same as in (2.5). However, if i = 0 and 0 6 j 6 k − 1 in (2.5), then the term also

appears when the indices are i and j + 1 in (2.4), meaning that the coefficient is

λ

(
αj−i

1− α
− αj+1−i

1− α

)
= λαj−i,

which is the same as in (2.5). Similarly, if 1 6 i 6 k and j = k in (2.5), then the term also

appears when the indices are i− 1 and j in (2.4), meaning that the coefficient is

λ

(
αj−i

1− α
− αj−(i−1)

1− α

)
= λαj−i,

which is the same as in (2.5). If 1 6 i 6 j 6 k− 1 in (2.5), then the term appears three more

times, for the index pairs (i− 1, j), (i, j + 1), (i− 1, j + 1) in (2.4), resulting the coefficient

λ

(
αj−i

1− α
− αj−(i−1)

1− α
− α(j+1)−i

1− α
+
α(j+1)−(i−1)

1− α

)
= λαj−i

1− 2α+ α2

1− α
= λαj−i(1− α),

which is the same as in (2.5). This completes the proof. ✷

Proof of Proposition 3.1. The distribution of X0 is a Poisson distribution with parameter

(1− α)−1λ, thus Cov(X0, X0) = Var(X0) = (1− α)−1λ. By (2.4), we have

F0,k(x0, xk) = E(xX0
0 xXk

k ) = F0,...,k(x0, 1, . . . , 1, xk) = e(1−α)
−1λ[αk(x0−1)(xk−1)+(x0−1)+(xk−1)]

for all x0, xk ∈ R and k ∈ N. Consequently,

E(X0Xk) =
∂2F0,k(x0, xk)

∂x0∂xk

∣∣∣∣
(x0,xk)=(1,1)

=
λαk

1− α
+

λ2

(1− α)2
, k ∈ N,

since

∂2F0,k(x0, xk)

∂x0∂xk
= F0,k(x0, xk)

λ2

(1− α)2
(αk(x0 − 1) + 1)(αk(xk − 1) + 1) + F0,k(x0, xk)

λ

1− α
αk.
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Hence we obtain the formula for Cov(X0, Xk). The statement follows from the multidimen-

sional central limit theorem. Due to the continuous mapping theorem, it is sufficient to show

the convergence N−1/2(S
(N)
0 , S

(N)
1 , . . . , S

(N)
k )

D−→ (X0,X1, . . . ,Xk) as N → ∞ for all k ∈ Z+.

For all k ∈ Z+, the random vectors
(
X

(j)
0 − λ

1−α , X
(j)
1 − λ

1−α , . . . , X
(j)
k − λ

1−α
)
, j ∈ N, are

independent, identically distributed having zero expectation vector and covariances

Cov(X
(j)
ℓ1
, X

(j)
ℓ2
) = Cov(X

(j)
0 , X

(j)
|ℓ2−ℓ1|) =

λα|ℓ2−ℓ1|

1− α
, j ∈ N, ℓ1, ℓ2 ∈ {0, 1, . . . , k},

following from the strict stationarity of X(j) and from the form of Cov(X0, Xk). ✷

Proof of Proposition 3.2. It is known that

Mk := Xk − E(Xk | FX
k−1) = Xk − (Xk−1E(ξ1,1) + E(ε1)) = Xk − αXk−1 − λ, k ∈ N,

are martingale differences with respect to the filtration FX
k := σ(X0, . . . , Xk), k ∈ Z+ with

E(M2
k | FX

k−1) = Xk−1Var(ξ1,1) + Var(ε1) = α(1− α)Xk−1 + λ, k ∈ N.(5.1)

The functional martingale central limit theorem can be applied, see, e.g., Jacod and Shiryaev

[12, Theorem VIII.3.33]. Indeed, by ergodicity, for each t ∈ R+, we have

1

n

⌊nt⌋∑

k=1

E(M2
k | FX

k−1)
a.s.−→

(
α(1− α)

λ

1− α
+ λ
)
t = (1 + α)λt as n→ ∞.

Moreover, the conditional Lyapunov condition holds, namely, again by ergodicity,

1

n2

⌊nt⌋∑

k=1

E(M4
k | FX

k−1)
a.s.−→ 0 as n→ ∞,

since there exists a second order polynomial P such that E(M4
k | Fk−1) = P (Xk−1), k ∈ N,

see Nedényi [20, Formula (8)], or Barczy et al. [2, Lemma A.2, part (ii)] together with the

decomposition Mk =
∑Xk−1

j=1 (ξk,j − E(ξk,j)) + (εk − E(εk)), k ∈ N. Hence we obtain

(
1√
n

⌊nt⌋∑

k=1

Mk

)

t∈R+

D−→
√
λ(1 + α)B as n→ ∞.

We have Xk = αXk−1 +Mk + λ, k ∈ N, thus E(Xk) = αE(Xk−1) + λ, k ∈ N, and hence

Xk − E(Xk) = α(Xk−1 − E(Xk−1)) +Mk, k ∈ N, yielding

Xk − E(Xk) = αk(X0 − E(X0)) +
k∑

j=1

αk−jMj , k ∈ N.

18



Consequently, for each n ∈ N and t ∈ R+,

1√
n

⌊nt⌋∑

k=1

(Xk − E(Xk)) =
1√
n
(X0 − E(X0))

⌊nt⌋∑

k=1

αk +
1√
n

⌊nt⌋∑

k=1

k∑

j=1

αk−jMj

= (X0 − E(X0))
α− α⌊nt⌋+1

(1− α)
√
n

+
1√
n

⌊nt⌋∑

j=1

Mj

⌊nt⌋∑

k=j

αk−j

= (X0 − E(X0))
α− α⌊nt⌋+1

(1− α)
√
n

+
1√
n

⌊nt⌋∑

j=1

Mj
1− α⌊nt⌋−j+1

1− α
,

implying the statement using Slutsky’s lemma. Indeed, n−1/2
∑⌊nt⌋

j=1 α
⌊nt⌋−j+1Mj converges in

L1 and hence in probability to 0 as n→ ∞, since, by (5.1),

E(|Mj |) 6
√

E(M2
j ) =

√
α(1− α)E(Xj−1) + λ =

√
λ(1 + α),

and hence,

E

(∣∣∣∣
1√
n

⌊nt⌋∑

j=1

α⌊nt⌋−j+1Mj

∣∣∣∣
)

6

√
λ(1 + α)√

n

⌊nt⌋∑

j=1

α⌊nt⌋−j+1 =

√
λ(1 + α)√

n

α(1− α⌊nt⌋)

1− α
→ 0

as n→ ∞. ✷

Proof of Theorem 3.3. For all N,m ∈ N and all t1, . . . , tm ∈ R+, by Proposition 3.2 and

by the continuity theorem, we have

1√
n
(S

(N,n)
t1 , . . . , S

(N,n)
tm )

D−→
√
λ(1 + α)

1− α

N∑

j=1

(B
(j)
t1 , . . . , B

(j)
tm ) as n→ ∞,

where B(j) = (B
(j)
t )t∈R+ , j ∈ {1, . . . , N}, are independent standard Wiener processes. Since

1√
N

N∑

j=1

(B
(j)
t1 , . . . , B

(j)
tm )

D
= (Bt1 , . . . , Btm), N ∈ N,

we obtain the first convergence.

For all n ∈ N and for all t1, . . . , tm ∈ R+ with t1 < . . . < tm, m ∈ N, by Proposition

3.1 and by the continuous mapping theorem, we have

1

N1/2

(
S
(N,n)
t1 , . . . , S

(N,n)
tm

) D−→
(⌊nt1⌋∑

k=1

Xk, . . . ,

⌊ntm⌋∑

k=1

Xk

)

D
= Nm

(
0,Var

(⌊nt1⌋∑

k=1

Xk, . . . ,

⌊ntm⌋∑

k=1

Xk

))
, N → ∞,
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where (Xk)k∈Z+ is the stationary Gaussian process given in Proposition 3.1 and

Var

(⌊nt1⌋∑

k=1

Xk, . . . ,

⌊ntm⌋∑

k=1

Xk

)
=

(
λ

1− α

⌊nti⌋∑

k=1

⌊ntj⌋∑

ℓ=1

α|ℓ−k|

)

i,j∈{1,...,m}

.

By the continuity theorem, for all θ1, . . . , θm ∈ R, m ∈ N, we conclude

lim
N→∞

E

(
exp

{
i
m∑

j=1

θjn
−1/2N−1/2S

(N,n)
tj

})

= exp

{
− λ

2n(1− α)

m∑

i=1

m∑

j=1

θiθj

⌊nti⌋∑

k=1

⌊ntj⌋∑

ℓ=1

α|ℓ−k|
}

→ exp

{
− (1 + α)λ

2(1− α)2

m∑

i=1

m∑

j=1

θiθj(ti ∧ tj)
}

as n→ ∞. Indeed, for all s, t ∈ R+ with s 6 t, we have

1

n

⌊ns⌋∑

k=1

⌊nt⌋∑

ℓ=1

α|ℓ−k| =
1

n

⌊ns⌋∑

k=1

k−1∑

ℓ=1

αk−ℓ +
⌊ns⌋
n

+
1

n

⌊ns⌋∑

k=1

⌊nt⌋∑

ℓ=k+1

αℓ−k

=
1

n

⌊ns⌋∑

k=1

α− αk

1− α
+

⌊ns⌋
n

+
1

n

⌊ns⌋∑

k=1

α− α⌊nt⌋−k+1

1− α

=
1

n(1− α)

(
⌊ns⌋α − α

1− α⌊ns⌋

1− α

)
+

⌊ns⌋
n

+
1

n(1− α)

(
⌊ns⌋α− α⌊nt⌋−⌊ns⌋+1 1− α⌊ns⌋

1− α

)

=
1 + α

1− α

⌊ns⌋
n

− α

(1− α)2n
(1 + α⌊nt⌋−⌊ns⌋)(1− α⌊ns⌋) → 1 + α

1− α
s

(5.2)

as n→ ∞. This implies the second convergence. ✷

Proof of Proposition 4.1. We have

E

(
Xk −

λ

1− α

)
= E

[
E

(
Xk −

λ

1− α

∣∣∣α
)]

= 0, k ∈ Z+,

and hence, for all k ∈ Z+,

Cov
(
X0 −

λ

1− α
,Xk −

λ

1− α

)
= E

[(
X0 −

λ

1− α

)(
Xk −

λ

1− α

)]

= E

{
E

[(
X0 −

λ

1− α

)(
Xk −

λ

1− α

) ∣∣∣α
]}

= E

( λαk

1− α

)
,

(5.3)
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where we applied (3.2). Now the statement follows from the multidimensional central limit

theorem in the same way as in the proof of Proposition 3.1. ✷

Proof of Proposition 4.2. For each n ∈ N and each t ∈ R+, put

T̃
(n)
t :=

1√
n

⌊nt⌋∑

k=1

S̃
(1)
k .

For each m ∈ N, each t1, . . . , tm ∈ R+, and each bounded continuous function g : Rm → R,

we have

E(g(T̃
(n)
t1 , . . . , T̃

(n)
tm )) =

∫ 1

0

E(g(T̃
(n)
t1 , . . . , T̃

(n)
tm ) |α = a) Pα(da)

=

∫ 1

0

E

(
g

(
1√
n

⌊nt1⌋∑

k=1

(
Xk −

λ

1− a

)
, . . . ,

1√
n

⌊ntm⌋∑

k=1

(
Xk −

λ

1− a

)) ∣∣∣∣ α = a

)
Pα(da).

Proposition 3.2, the portmanteau theorem and the boundedness of g justify the usage of the

dominated convergence theorem, and we obtain

lim
n→∞

E(g(T̃
(n)
t1 , . . . , T̃

(n)
tm )) =

∫ 1

0

E

(
g

(√
λ(1 + a)

1− a
Bt1 , . . . ,

√
λ(1 + a)

1− a
Btm

))
Pα(da)

=

∫ 1

0

E

(
g

(√
λ(1 + α)

1− α
Bt1 , . . . ,

√
λ(1 + α)

1− α
Btm

)∣∣∣∣α = a

)
Pα(da)

= E

(
g

(√
λ(1 + α)

1− α
Bt1 , . . . ,

√
λ(1 + α)

1− α
Btm

))
,

hence we obtain the statement by the portmanteau theorem. ✷

Proof of Proposition 4.3. For all k ∈ Z+, by the strict stationarity of (Xk)k∈Z+ and (5.3),

we have

Cov(X0, Xk) = E

[(
X0 − E

(
λ

1− α

))(
Xk − E

(
λ

1− α

))]

= E

[(
X0 −

λ

1− α

)(
Xk −

λ

1− α

)]
+ E

[(
λ

1− α
− E

(
λ

1− α

))2
]

= λE

(
αk

1− α

)
+ λ2Var

(
1

1− α

)
,

(5.4)

since

E

[(
Xk −

λ

1− α

)(
λ

1− α
− E

(
λ

1− α

))]

= E

{
E

[(
Xk −

λ

1− α

)(
λ

1− α
− E

(
λ

1− α

)) ∣∣∣∣α
]}

= E

{(
λ

1− α
− E

(
λ

1− α

))
E

(
Xk −

λ

1− α

∣∣∣∣α
)}

= 0

21



for all k ∈ Z+.

The statement follows from the multidimensional central limit theorem as in the proof of

Proposition 3.1. Indeed, for all k ∈ Z+, the random vectors

(
X

(j)
0 − λE

(
1

1− α

)
, X

(j)
1 − λE

(
1

1− α

)
, . . . , X

(j)
k − λE

(
1

1− α

))
, j ∈ N,

are independent, identically distributed having zero expectation vector and covariances

Cov(X
(j)
ℓ1
, X

(j)
ℓ2
) = Cov(X

(j)
0 , X

(j)
|ℓ2−ℓ1|) = λE

(
α|ℓ2−ℓ1|

1− α

)
+ λ2Var

(
1

1− α

)

for j ∈ N and ℓ1, ℓ2 ∈ {0, 1, . . . , k}, following from the strict stationarity of X(j) and from

the form of Cov(X0, Xk) given in (5.4). ✷

Proof of Proposition 4.4. We have a decomposition S
(1)
k = S̃

(1)
k +R

(1)
k , k ∈ Z+, with

R
(1)
k := E(X

(1)
k |α(1))− E(X

(1)
k ) =

λ

1− α(1)
− E

(
λ

1− α(1)

)
, k ∈ Z+.

We have

(
1

n

⌊nt⌋∑

k=1

R
(1)
k

)

t∈R+

=

(
⌊nt⌋
n

(
λ

1− α(1)
− E

(
λ

1− α(1)

)))

t∈R+

Df−→
((

λ

1− α
− E

(
λ

1− α

))
t

)

t∈R+

as n→ ∞. Moreover, by Proposition 4.2, Df-limn→∞
(
n−1/2

∑⌊nt⌋
k=1 S̃

(1)
k

)
t∈R+

exists, hence

(
1

n

⌊nt⌋∑

k=1

S̃
(1)
k

)

t∈R+

Df−→ 0 as n→ ∞,

implying that for all m ∈ N and all t1, . . . , tm ∈ R+, we have

(
1

n

⌊nt1⌋∑

k=1

S̃
(1)
k , . . . ,

1

n

⌊ntm⌋∑

k=1

S̃
(1)
k

)
P−→ 0 as n→ ∞.

By Slutsky’s lemma we conclude the statement. ✷

First proof of Theorem 4.7. By Remark 4.5, condition β ∈ (0, 1) implies E
(

1
1−α
)
< ∞.

Hence, by Proposition 4.1 and the continuous mapping theorem, it suffices to show that

(5.5) Df- lim
n→∞

(
1

n1−β
2

⌊nt⌋∑

k=1

Ỹk
)

t∈R+

=

√
2λψ1Γ(β)

(2− β)(1− β)
B1−β

2
.
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We are going to apply Theorem 4.3 in Beran et al. [3] with m = 1 for the strictly stationary

Gaussian process
(
Ỹk/

√
Var(Ỹ0)

)
k∈Z+

, where, by (4.4),

Var(Ỹ0) = λE

(
1

1− α

)
, Cov(Ỹ0, Ỹk) = λE

(
αk

1− α

)
, k ∈ Z+,

hence

Cov


 Ỹ0√

Var(Ỹ0)
,

Ỹk√
Var(Ỹ0)


 =

E

(
αk

1−α

)

E
(

1
1−α
) , k ∈ Z+.

In order to check the conditions of Theorem 4.3 in Beran et al. [3], first we show that

(5.6) kβ E

(
αk

1− α

)
= kβ

∫ 1

0

ak(1− a)β−1ψ(a) da→ ψ1Γ(β) as k → ∞,

meaning that the covariance function of the process (Ỹk)k∈Z+ is regularly varying with index

−β. First note that, by Stirling’s formula,

lim
k→∞

kβ
∫ 1

0

ak(1− a)β−1ψ1 da = lim
k→∞

ψ1
kβΓ(k + 1)

Γ(k + β + 1)
Γ(β)

= ψ1Γ(β) lim
k→∞

√
k

k + β

(
k

k + β

)k+β
eβ = ψ1Γ(β).

Next, for arbitrary δ ∈ (0, ψ1), there exists ε ∈ (0, 1) such that |ψ(a) − ψ1| 6 δ for all

a ∈ [1− ε, 1), and hence

kβ
∫ 1

1−ε
ak(1− a)β−1|ψ(a)− ψ1| da 6 δ sup

k∈N
kβ
∫ 1

0

ak(1− a)β−1 da

can be arbitrary small. Further, observe

kβ
∫ 1−ε

0

ak(1− a)β−1ψ(a) da 6
kβ(1− ε)k

ε

∫ 1−ε

0

(1− a)βψ(a) da

6
kβ(1− ε)k

ε

∫ 1

0

(1− a)βψ(a) da =
kβ(1− ε)k

ε
→ 0 as k → ∞.

In a similar way, we have

kβ
∫ 1−ε

0

ak(1− a)β−1ψ1 da 6 ψ1k
β(1− ε)k

∫ 1−ε

0

(1− a)β−1 da

6 ψ1k
β(1− ε)k

∫ 1

0

(1− a)β−1 da = ψ1
kβ(1− ε)k

β
→ 0 as k → ∞,

hence

kβ
∫ 1−ε

0

ak(1− a)β−1|ψ(a)− ψ1| da→ 0 as k → ∞,
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implying (5.6). Applying (5.6), we conclude

kβ Cov


 Ỹ0√

Var(Ỹ0)
,

Ỹk√
Var(Ỹ0)


 = kβ

E

(
αk

1−α

)

E
(

1
1−α
) → ψ1Γ(β)

E
(

1
1−α
)

as k → ∞. Consequently, by Theorem 4.3 in Beran et al. [3],

 1

n1−β
2L1(n)1/2

⌊nt⌋∑

k=1

Ỹk√
λE
(

1
1−α
)




t∈R+

D−→ Z1,1−β
2

D
= B1−β

2
, as n→ ∞,

where Z1,1−β
2

is the Hermite-Rosenblatt process defined in Definition 3.24 of Beran et al. [3],

and

L1(n) =
ψ1Γ(β)

E
(

1
1−α
) C1, n ∈ N, with C1 =

2

(1− β)(2− β)
.

The fact that the Hermite-Rosenblatt process Z1,1−β
2

coincides in law with B1−β
2

is shown

in Beran et al. [3], see Definition 3.23, the representation in formula (3.111), and page 195 of

[3] for details. Hence we obtain the statement. ✷

Second proof of Theorem 4.7. As in the first proof of Theorem 4.7, it suffices to show

(5.5). As for every n ∈ N the process n−1+β/2
∑⌊nt⌋

k=1 Ỹk, t ∈ R+, is Gaussian, so is the limit

process. Also, it is clear that both processes have zero mean. Therefore, it suffices to show that

the covariance function of n−1+β/2
∑⌊nt⌋

k=1 Ỹk, t ∈ R+, converges to that of the limit process

in (5.5). By (4.4), the covariance function of n−1+β/2
∑⌊nt⌋

k=1 Ỹk, t ∈ R+, for any t1, t2 ∈ R+

takes the form

Cov

(
n−1+β/2

⌊nt1⌋∑

k=1

Ỹk, n−1+β/2

⌊nt2⌋∑

ℓ=1

Ỹℓ
)

= n−2+βλE

(⌊nt1⌋∑

k=1

⌊nt2⌋∑

ℓ=1

α|k−ℓ|

1− α

)
.

By (5.2), for time points 0 6 t1 6 t2, we get

1

1− α

⌊nt1⌋∑

k=1

⌊nt2⌋∑

ℓ=1

α|k−ℓ| =
(1− α2)⌊nt1⌋ − α

(
1− α⌊nt2⌋ − α⌊nt1⌋ + α⌊nt2⌋−⌊nt1⌋

)

(1− α)3

=
α(α⌊nt2⌋ − 1) + ⌊nt2⌋(1− α2)/2

(1− α)3
+
α(α⌊nt1⌋ − 1) + ⌊nt1⌋(1− α2)/2

(1− α)3

− α(α⌊nt2⌋−⌊nt1⌋ − 1) + (⌊nt2⌋ − ⌊nt1⌋)(1− α2)/2

(1− α)3
.

(5.7)

We are going to show that for any 0 6 t1 6 t2 we get

n−2+β
E

(
α(α⌊nt2⌋−⌊nt1⌋ − 1) + (⌊nt2⌋ − ⌊nt1⌋)(1− α2)/2

(1− α)3

)

→ ψ1

∫ ∞

0

(
e−y(t2−t1) − 1 + y(t2 − t1)

)
yβ−3 dy =

ψ1Γ(β)

(2− β)(1− β)
(t2 − t1)

2−β,
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as n→ ∞, where the equality follows with repeated partial integration. This will imply that

the limit of the sequence of the covariance functions in question is

2λψ1Γ(β)

(2− β)(1− β)

t2−β1 + t2−β2 − |t2 − t1|2−β
2

,

that is the covariance function of a fractional Brownian motion with parameter 1− β/2 mul-

tiplied by
√

2λψ1Γ(β)/((2− β)(1− β)), as desired.

By substituting a = 1− y/n we get that

n−2+β
E

(
α(α⌊nt2⌋−⌊nt1⌋ − 1) + (⌊nt2⌋ − ⌊nt1⌋)(1− α2)/2

(1− α)3

)

= n−2+β

∫ 1

0

a(a⌊nt2⌋−⌊nt1⌋ − 1) + (⌊nt2⌋ − ⌊nt1⌋)(1− a2)/2

(1− a)3
(1− a)βψ(a) da

= n−2+β

∫ n

0

[(
1− y

n

)((
1− y

n

)⌊nt2⌋−⌊nt1⌋
− 1

)

+ (⌊nt2⌋ − ⌊nt1⌋)
(
1−

(
1− y

n

)2) 1

2

](y
n

)β−3

ψ
(
1− y

n

) dy

n

=

∫ n

0

Dn(y) dy

with

Dn(y) :=

[(
1− y

n

)((
1− y

n

)⌊nt2⌋−⌊nt1⌋
− 1

)
+

⌊nt2⌋ − ⌊nt1⌋
n

y
(
1− y

2n

)]
yβ−3ψ

(
1− y

n

)

for y ∈ [0, n]. First note that, for any ε ∈ (0, 1) and n > 1/ε, we have

∣∣∣∣
∫ n

nε

Dn(y) dy

∣∣∣∣ 6
∫ n

nε

(
1 · 2 +

(
t2 − t1 +

1

n

)
y

)
yβ−3ψ

(
1− y

n

)
dy

6

∫ n

nε

(1 · 2y + (t2 − t1 + 1)y)yβ−3ψ
(
1− y

n

)
dy

= (t2 − t1 + 3)

∫ 1−ε

0

(
n(1− a)

)β−2
ψ(a)n da

= (t2 − t1 + 3)nβ−1

∫ 1−ε

0

(1− a)β−2ψ(a) da

6 (t2 − t1 + 3)nβ−1ε−2

∫ 1

0

(1− a)βψ(a) da→ 0, n→ ∞.

(5.8)

We are going to show that

∫ nε

0

Dn(y) dy → ψ1

∫ ∞

0

(
e−y(t2−t1) − 1 + y(t2 − t1)

)
yβ−3 dy, n→ ∞.
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The pointwise convergence is evident, and we can give a dominating integrable function proving

the above convergence.

Note that

(
1− y

n

)⌊nt2⌋−⌊nt1⌋
= 1− (⌊nt2⌋ − ⌊nt1⌋)

y

n
+

⌊nt2⌋−⌊nt1⌋∑

k=2

(⌊nt2⌋ − ⌊nt1⌋
k

)(
−y
n

)k
,

where for any y ∈ [0, 1] we have

∣∣∣∣∣∣

⌊nt2⌋−⌊nt1⌋∑

k=2

(⌊nt2⌋ − ⌊nt1⌋
k

)(
−y
n

)k
∣∣∣∣∣∣

6 y2
⌊nt2⌋−⌊nt1⌋∑

k=2

yk−2

k!

(⌊nt2⌋ − ⌊nt1⌋) · · · (⌊nt2⌋ − ⌊nt1⌋ − k + 1)

nk

6 y2
∞∑

k=0

(t2 − t1 + 1)k

k!
= y2et2−t1+1.

Choose ε ∈ (0, 1) such that for every x ∈ (1 − ε, 1) we have ψ(x) 6 2ψ1. Then for any

n > 1/ε, applying Bernoulli’s inequality, we obtain

∫ 1

0

|Dn(y)| dy =
∫ 1

0

∣∣∣∣
[(

1− y

n

)⌊nt2⌋−⌊nt1⌋
− 1 + (⌊nt2⌋ − ⌊nt1⌋)

y

n

]

− y

n

[(
1− y

n

)⌊nt2⌋−⌊nt1⌋
− 1 +

y(⌊nt2⌋ − ⌊nt1⌋)
2n

]∣∣∣∣y
β−3ψ

(
1− y

n

)
dy

6

∫ 1

0

(
y2et2−t1+1 +

y

n

(
y(t2 − t1 + 1) + y

t2 − t1 + 1

2

))
yβ−3ψ

(
1− y

n

)
dy

6 2ψ1(e
t2−t1+1 + 2(t2 − t1 + 1))

∫ 1

0

yβ−1 dy <∞.

Similarly to (5.8), for any n > 1/ε, one gets

∫ nε

1

|Dn(y)| dy 6
∫ nε

1

(2 + t2 − t1 + 1)yβ−2ψ
(
1− y

n

)
dy

6 (t2 − t1 + 3)2ψ1

∫ nε

1

yβ−2 dy 6 (t2 − t1 + 3)2ψ1

∫ ∞

1

yβ−2 dy <∞.

So the function

2ψ1(e
t2−t1+1 + 2(t2 − t1 + 1))yβ−1

1[0,1)(y) + (t2 − t1 + 3)2ψ1y
β−2

1[1,∞)(y)

can be chosen as a dominating integrable function. ✷
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Proof of Theorem 4.8. To prove this limit theorem it is enough to show that for any n ∈ N,

Df- lim
N→∞

N
− 1

2(1+β) S̃(N,n) = (⌊nt⌋V2(1+β))t∈R+ .

For this, by the continuous mapping theorem, it is enough to verify that for any m ∈ N,

N− 1
2(1+β)

N∑

j=1

(
X

(j)
1 − λ

1− α(j)
, . . . , X(j)

m − λ

1− α(j)

)
D−→ V2(1+β)(1, . . . , 1)

as N → ∞. So, by the continuity theorem, we have to check that for any m ∈ N and

θ1, . . . , θm ∈ R the convergence

E

(
exp

{
i

m∑

k=1

θk

(
N

− 1
2(1+β)

N∑

j=1

(
X

(j)
k − λ

1− α(j)

))})

= E

(
exp

{
iN− 1

2(1+β)

N∑

j=1

m∑

k=1

θk

(
X

(j)
k − λ

1− α(j)

)})

=

[
E

(
exp

{
iN− 1

2(1+β)

m∑

k=1

θk

(
Xk −

λ

1− α

)})]N

→ E

(
ei

∑m
k=1 θkV2(1+β)

)
= e−Kβ |

∑m
k=1 θk|2(1+β)

as N → ∞

holds. Note that it suffices to show

ΘN := N

[
1− E

(
exp

{
iN

− 1
2(1+β)

m∑

k=1

θk

(
Xk −

λ

1− α

)})]
→ Kβ

∣∣∣∣∣

m∑

k=1

θk

∣∣∣∣∣

2(1+β)

as N → ∞, since it implies that (1 − ΘN/N)N → e−Kβ |
∑m

k=1 θk|2(1+β)
as N → ∞. By

applying (2.4) to the left hand side, we get

ΘN = N E

[
1− F0,...,m−1

(
eiN

− 1
2(1+β) θ1, . . . , eiN

− 1
2(1+β) θm

∣∣∣α
)
e−iN

− 1
2(1+β) λ

1−α

∑m
k=1 θk

]

= N E

[
1− e

λ
1−α

AN (α)
]
= N

∫ 1

0

(
1− e

λ
1−a

AN (a)
)
ψ(a)(1− a)β da,

where F0,...,m−1(z0, . . . , zm−1 |α) := E(zX0
0 zX1

1 · · · zXm−1

m−1 |α), z0, . . . , zm−1 ∈ C, and

AN (a) := − i(θ1 + · · ·+ θm)

N
1

2(1+β)

+
∑

16ℓ6j6m

aj−ℓ
(
eiN

− 1
2(1+β) θℓ − 1

)
eiN

− 1
2(1+β) (θℓ+1+···+θj−1)

(
eiN

− 1
2(1+β) θj − 1

)
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for a ∈ [0, 1]. Let us show that for any ε ∈ (0, 1) we have supa∈(0,1−ε) |NAN(a)| → 0 as

N → ∞. Using (B.2), for any ε ∈ (0, 1) we get

sup
a∈(0,1−ε)

N |AN(a)| = sup
a∈(0,1−ε)

N

∣∣∣∣∣

m∑

k=1

(
eiN

− 1
2(1+β) θk − 1− iN− 1

2(1+β) θk

)

+
∑

16ℓ<j6m

aj−ℓ
(
eiN

− 1
2(1+β) θℓ − 1

)
eiN

− 1
2(1+β) (θℓ+1+···+θj−1)

(
eiN

− 1
2(1+β) θj − 1

)∣∣∣∣∣

6 N

(
m∑

k=1

N− 1
1+β

θ2k
2

+
∑

16ℓ<j6m

N− 1
1+β |θℓ||θj |

)
= N

β
1+β

(
∑m

k=1 |θk|)
2

2
→ 0

as N → ∞, since β/(1+β) < 0. Therefore, by Lemma B.2, substituting a = 1− z−1N− 1
1+β ,

the statement of the theorem will follow from

lim sup
N→∞

N

∫ 1

1−ε

∣∣∣1− e
λ

1−a
AN (a)

∣∣∣(1− a)β da

= lim sup
N→∞

∫ ∞

ε−1N
− 1

1+β

∣∣∣1− eλzN
1

1+β AN

(
1−z−1N

− 1
1+β

)∣∣∣z−(2+β) dz <∞
(5.9)

for all ε ∈ (0, 1) and

lim
ε↓0

lim sup
N→∞

∣∣∣∣N
∫ 1

1−ε

(
1− e

λ
1−a

AN (a)
)
(1− a)β da− I

∣∣∣∣

= lim
ε↓0

lim sup
N→∞

∣∣∣∣
∫ ∞

ε−1N
− 1

1+β

(
1− eλzN

1
1+β AN

(
1−z−1N

− 1
1+β

))
z−(2+β) dz − I

∣∣∣∣ = 0

(5.10)

with

I :=

∫ ∞

0

(
1− e−

λz
2

(∑m
k=1 θk

)2)
z−(2+β) dz

=


λ

2

∣∣∣∣∣

m∑

k=1

θk

∣∣∣∣∣

2



1+β ∫ ∞

0

(1− e−z)z−(2+β) dz = ψ−1
1 Kβ

∣∣∣∣∣

m∑

k=1

θk

∣∣∣∣∣

2(1+β)

,

where the last equality is justified by Lemma 2.2.1 in Zolotarev [38] (be careful for the misprint

in [38]: a negative sign is superfluous) or by Li [17, formula (1.28)]. Next we check (5.9) and

(5.10).

By Taylor expansion,

eiN
− 1

2(1+β) θℓ − 1 = iN− 1
2(1+β) θℓ +N− 1

1+β O(1) = N− 1
2(1+β) O(1),

eiN
− 1

2(1+β) θℓ − 1− iN
− 1

2(1+β)θℓ = −N− 1
1+β

θ2ℓ
2

+N
− 3

2(1+β) O(1)
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for all ℓ ∈ {1, . . . , m}, resulting

(5.11) λzN
1

1+βAN

(
1− 1

zN
1

1+β

)
= −λz

(∑m
k=1 θk

)2

2
+

zO(1)

N
1

2(1+β)

+
O(1)

N
1

1+β

for z > N− 1
1+β . Indeed, for z > N− 1

1+β , we have

AN

(
1− 1

zN
1

1+β

)

=
m∑

k=1

(
eiN

− 1
2(1+β) θk − 1− iN− 1

2(1+β) θk
)

+
∑

16ℓ<j6m

(
1− 1

zN
1

1+β

)j−ℓ (
eiN

− 1
2(1+β) θℓ − 1

)
eiN

− 1
2(1+β) (θℓ+1+···+θj−1)

(
eiN

− 1
2(1+β) θj − 1

)

=

m∑

k=1

(
− θ2k

2N
1

1+β

+
O(1)

N
3

2(1+β)

)

+
∑

16ℓ<j6m

(
1 +

O(1)

zN
1

1+β

)(
iθℓ

N
1

2(1+β)

+
O(1)

N
1

1+β

)(
1 +

O(1)

N
1

2(1+β)

)(
iθj

N
1

2(1+β)

+
O(1)

N
1

1+β

)

= −
∑m

k=1 θ
2
k

2N
1

1+β

+
O(1)

N
3

2(1+β)

−
∑

16ℓ<j6m θℓθj

N
1

1+β

+
O(1)

N
3

2(1+β)

+
O(1)

zN
2

1+β

= −
(∑m

k=1 θk
)2

2N
1

1+β

+
O(1)

N
3

2(1+β)

+
O(1)

zN
2

1+β

,

since by Bernoulli’s inequality
∣∣∣∣∣

(
1− 1

zN
1

1+β

)j−ℓ
− 1

∣∣∣∣∣ 6
j − ℓ

zN
1

1+β

6
m

zN
1

1+β

,

yielding that (
1− 1

zN
1

1+β

)j−ℓ
= 1 +

O(1)

zN
1

1+β

.

By (5.11), for z ∈ [1,∞) and for large enough N we have

λzN
1

1+β ReAN
(
1− z−1N− 1

1+β
)
= −λz(

∑m
k=1 θk)

2

2

(
1− ReO(1)

N
1

2(1+β)

)
+

ReO(1)

N
1

1+β

6 −λz(
∑m

k=1 θk)
2

4
+

|O(1)|
N

1
1+β

6 0,

hence we obtain∫ ∞

1

∣∣∣∣1− eλzN
1

1+β AN (1−z−1N
− 1

1+β )

∣∣∣∣ z
−(β+2) dz

6

∫ ∞

1

(
1 + eλzN

1
1+β ReAN (1−z−1N

− 1
1+β )

)
z−(β+2) dz 6 2

∫ ∞

1

z−(β+2) dz <∞.

(5.12)
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Again by (5.11), for ε ∈ (0, 1), z ∈
(
ε−1N− 1

1+β , 1
]

and for large enough N , we have

∣∣∣λzN
1

1+βAN

(
1− z−1N− 1

1+β

)∣∣∣ 6 λz(
∑m

k=1 θk)
2

2
+
z|O(1)|
N

1
2(1+β)

+
|O(1)|
N

1
1+β

6 z

(
λ(
∑m

k=1 θk)
2

2
+

|O(1)|
N

1
2(1+β)

+ ε|O(1)|
)

6 z|O(1)| 6 |O(1)|,

since N− 1
1+β < zε. Hence, using (B.3), we obtain

∫ 1

ε−1N
− 1

1+β

∣∣∣∣1− eλzN
1

1+β AN

(
1−z−1N

− 1
1+β

)∣∣∣∣ z
−(2+β) dz

6

∫ 1

ε−1N
− 1

1+β

∣∣∣λzN
1

1+βAN
(
1− z−1N− 1

1+β
)∣∣∣ e

∣∣∣∣λzN
1

1+β AN

(
1−z−1N

− 1
1+β

)∣∣∣∣
z−(2+β) dz

6 |O(1)|e|O(1)|
∫ 1

0

z−(1+β) dz <∞,

which, together with (5.12), imply (5.9).

Now we turn to prove (5.10). By (B.1), we have
∣∣∣∣∣∣

∫ ε−1N
− 1

1+β

0

(
1− e−

λz
2
(
∑m

k=1 θk)
2
)
z−(2+β) dz

∣∣∣∣∣∣
6

∫ ε−1N
− 1

1+β

0

λz(
∑m

k=1 θk)
2

2
z−(2+β) dz

=
λ(
∑m

k=1 θk)
2

2

∫ ε−1N
− 1

1+β

0

z−(1+β) dz =
λ(
∑m

k=1 θk)
2

2(−β)

(
1

εN
1

1+β

)−β
→ 0

as N → ∞, hence (5.10) reduces to check that limε↓0 lim supN→∞ IN,ε = 0, where

IN,ε :=

∫ ∞

ε−1N
− 1

1+β

[
eλzN

1
1+β AN (1−z−1N

− 1
1+β ) − e−

λz
2
(
∑m

k=1 θk)
2
]
z−(2+β) dz.

Applying again (5.11), we obtain

|IN,ε| 6
∫ ∞

ε−1N
− 1

1+β

e−
λz
2
(
∑m

k=1 θk)
2
∣∣∣ezN

− 1
2(1+β) O(1)+N

− 1
1+β O(1) − 1

∣∣∣z−(2+β) dz.

Here, for ε ∈ (0, 1) and z ∈ (ε−1N− 1
1+β ,∞), we have

∣∣zN− 1
2(1+β) O(1) +N− 1

1+β O(1)
∣∣ 6 z

(
N− 1

2(1+β) + ε
)
|O(1)|,

and hence, by (B.3), we get

∣∣∣ezN
− 1

2(1+β) O(1)+N
− 1

1+β O(1) − 1
∣∣∣ 6

∣∣zN− 1
2(1+β) O(1) +N− 1

1+β O(1)
∣∣ e
∣∣zN− 1

2(1+β) O(1)+N
− 1

1+β O(1)

∣∣

6 z
(
N− 1

2(1+β) + ε
)
|O(1)| ez

(
N

− 1
2(1+β)+ε

)
|O(1)|.
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Consequently, for large enough N and small enough ε ∈ (0, 1),

|IN,ε| 6
(
N− 1

2(1+β) + ε
)
|O(1)|

∫ ∞

ε−1N
− 1

1+β

e−
λz
2
(
∑m

k=1 θk)
2+z
(
N

− 1
2(1+β)+ε

)
|O(1)|z−(1+β) dz

6
(
N− 1

2(1+β) + ε
)
|O(1)|

∫ ∞

0

e−
λz
4
(
∑m

k=1 θk)
2

z−(1+β) dz,

that gets arbitrarily close to zero as N approaches infinity and ε tends to 0, since the

integral is finite due to the fact that

Γ(−β)


λ

4

(
m∑

k=1

θk

)2


β

e−λz(
∑m

k=1 θk)
2/4 z−(1+β), z > 0,

is the density function of a Gamma distributed random variable with parameters −β and

λ(
∑m

k=1 θk)
2/4. This yields (5.10) completing the proof. ✷

Proof of Theorem 4.9. Similarly as in the proof of Theorem 4.8, it suffices to show that for

any m ∈ N and θ1, . . . , θm ∈ R we have the convergence

N

[
1− E

(
exp

{
i√

N logN

m∑

k=1

θk

(
Xk −

λ

1− α

)})]
→ λψ1

2

(
m∑

k=1

θk

)2

as N → ∞. By applying (2.4), the left hand side equals

N E

[
1− F0,...,m−1

(
e

iθ1√
N logN , . . . , e

iθm√
N logN

∣∣∣α
)
e
− iλ(θ1+···+θm)

(1−α)
√

N logN

]

= N E

[
1− e

λ
1−α

BN (α)
]
= N

∫ 1

0

(
1− e

λ
1−a

BN (a)
)
ψ(a) da

with

BN(a) :=
m∑

k=1

(
e

iθk√
N logN − 1− iθk√

N logN

)

+
∑

16ℓ<j6m

aj−ℓ
(
e

iθℓ√
N logN − 1

)
e

i(θℓ+1+···+θj−1)√
N logN

(
e

iθj√
N logN − 1

)
, a ∈ [0, 1].

Just like in the proof of Theorem 4.8 it is easy to see that for any ε ∈ (0, 1) we have

sup
a∈(0,1−ε)

|NBN (a)| 6
(
∑m

k=1 θk)
2

2 logN
→ 0

as N → ∞. Therefore, by Lemma B.2, substituting a = 1 − z/N , the statement of the

theorem will follow from

lim sup
N→∞

N

∫ 1

1−ε

∣∣∣1− e
λ

1−a
BN (a)

∣∣∣ da = lim sup
N→∞

∫ εN

0

∣∣∣1− e
λN
z
BN (1− z

N
)
∣∣∣ dz <∞,(5.13)
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and

lim
N→∞

N

∫ 1

1−ε

(
1− e

λ
1−a

BN (a)
)
da = lim

N→∞

∫ εN

0

(
1− e

λN
z
BN (1− z

N
)
)
dz =

λ

2

(
m∑

k=1

θk

)2

(5.14)

for all ε ∈ (0, 1). Next we check (5.13) and (5.14).

Using Taylor expansions, similarly as in the proof of Theorem 4.8, we get

(5.15)
λN

z
BN

(
1− z

N

)
= −λ(

∑m
k=1 θk)

2

2z logN
+

O(1)

zN1/2(logN)3/2
+

O(1)

N logN
.

Indeed, for z ∈ [0, N ] we have

BN

(
1− z

N

)
=

m∑

k=1

(
e

iθk√
N logN − 1− iθk√

N logN

)

+
∑

16ℓ<j6m

(
1− z

N

)j−ℓ (
e

iθℓ√
N logN − 1

)
e

i(θℓ+1+···+θj−1)√
N logN

(
e

iθj√
N logN − 1

)

=

m∑

k=1

(
− θ2k
2N logN

+
O(1)

(N logN)3/2

)

+
∑

16ℓ<j6m

(
1 +

zO(1)

N

)(
iθℓ√

N logN
+

O(1)

N logN

)

×
(
1 +

O(1)√
N logN

)(
iθj√

N logN
+

O(1)

N logN

)

= −
∑m

k=1 θ
2
k

2N logN
+

O(1)

(N logN)3/2
−
∑

16ℓ<j6m θℓθj

N logN
+

O(1)

(N logN)3/2
+

zO(1)

N2 logN

= −(
∑m

k=1 θk)
2

2N logN
+

O(1)

(N logN)3/2
+

zO(1)

N2 logN
,

since, by Bernoulli’s inequality,
∣∣∣∣
(
1− z

N

)j−ℓ
− 1

∣∣∣∣ 6 (j − ℓ)
z

N
6 m

z

N
,

yielding that (
1− z

N

)j−ℓ
= 1 +

z

N
O(1).

By (5.15), for z ∈
(
0, 1

logN

)
and for large enough N we have

λN

z
ReBN

(
1− z

N

)
= −λ(

∑m
k=1 θk)

2

2z logN

(
1− ReO(1)√

N logN

)
+

ReO(1)

N logN

6 −λ(
∑m

k=1 θk)
2

4z logN
+

|O(1)|
N logN

6 −λ(
∑m

k=1 θk)
2

4
+

|O(1)|
N logN

,
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hence we obtain

∫ 1
logN

0

∣∣∣1− e
λN
z
BN (1− z

N
)
∣∣∣ dz 6

∫ 1
logN

0

(
1 + e

λN
z

ReBN (1− z
N
)
)
dz

6
1

logN

(
1 + exp

{
−λ (

∑m
k=1 θk)

2

4
+

|O(1)|
N logN

})
→ 0 as N → ∞.

(5.16)

Note that

1

logN

∫ εN

1
logN

1

z
dz =

log ε+ logN + log logN

logN
→ 1 as N → ∞,(5.17)

1

logN

∫ εN

1
logN

1

z2
dz =

εN logN − 1

εN logN
→ 1 as N → ∞.(5.18)

By (5.15), for all z ∈
(

1
logN

, εN
)
, we have

(5.19)

∣∣∣∣
λN

z
BN

(
1− z

N

)∣∣∣∣ 6
λ(
∑m

k=1 θk)
2

2z logN
+

|O(1)|
zN1/2(logN)3/2

+
|O(1)|
N logN

= |O(1)|.

Thus, by (B.3) and (5.17), we get

lim sup
N→∞

∫ εN

1
logN

∣∣∣1− e
λN
z
BN (1− z

N
)
∣∣∣ dz

6 lim sup
N→∞

∫ εN

1
logN

∣∣∣∣
λN

z
BN(1−

z

N
)

∣∣∣∣ e|
λN
z
BN (1− z

N
)| dz

6 lim sup
N→∞

e|O(1)|
∫ εN

1
logN

[
λ(
∑m

k=1 θk)
2

2z logN
+

|O(1)|
zN1/2(logN)3/2

+
|O(1)|
N logN

]
dz <∞,

which, together with (5.16), imply (5.13).

Now we turn to prove (5.14). By (5.16), the convergence (5.14) reduces to prove that

∣∣∣∣∣

∫ εN

1
logN

(
1− e

λN
z
BN (1− z

N
)
)
dz − λ (

∑m
k=1 θk)

2

2

∣∣∣∣∣→ 0 as N → ∞.

Using (5.17), it is enough to check that

∣∣∣∣∣

∫ εN

1
logN

(
e

λN
z
BN (1− z

N
) − 1 +

λ (
∑m

k=1 θk)
2

2z logN

)
dz

∣∣∣∣∣→ 0 as N → ∞.
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By applying (B.4), (5.15) and (5.19), for large enough N we get

∣∣∣∣∣

∫ εN

1
logN

[(
e

λN
z
BN (1− z

N
) − 1

)
+
λ (
∑m

k=1 θk)
2

2z logN

]
dz

∣∣∣∣∣

6

∫ εN

1
logN

[
1

2

∣∣∣∣
λN

z
BN

(
1− z

N

)∣∣∣∣
2

e|λNz BN (1− z
N
)| +

∣∣∣∣∣
λN

z
BN

(
1− z

N

)
+
λ (
∑m

k=1 θk)
2

2z logN

∣∣∣∣∣

]
dz

6

∫ εN

1
logN

[
1

2

(
λ (
∑m

k=1 θk)
2

2z logN
+

|O(1)|
zN1/2(logN)3/2

+
|O(1)|
N logN

)2

e|O(1)|

+
|O(1)|

zN1/2(logN)3/2
+

|O(1)|
N logN

]
dz

6

∫ εN

1
logN

[
3

2

( |O(1)|
z2(logN)2

+
|O(1)|

z2N(logN)3
+

|O(1)|
N2(logN)2

)
+

|O(1)|
zN1/2(logN)3/2

+
|O(1)|
N logN

]
dz,

which converges to 0 as N → ∞ using (5.17) and (5.18). This yields (5.14) completing the

proof. ✷

First proof of Theorem 4.10. By Proposition 4.2, we have

Df- lim
n→∞

(
n− 1

2

⌊nt⌋∑

k=1

(X
(1)
k − E(X

(1)
k |α(1)))

)

t∈R+

=

√
λ(1 + α)

1− α
B,

where (Bt)t∈R+ is a standard Wiener process and α is a random variable having a density

function of the form (4.5) with β ∈ (−1, 1) and ψ1 ∈ (0,∞), and being independent of B.

Let Wt :=

√
λ(1+α)

1−α Bt, t ∈ R+, and (W(i)
t )t∈R+ , i ∈ N, be its independent copies. It remains

to prove that

Df- lim
N→∞

(
N− 1

1+β

N∑

i=1

W(i)
t

)

t∈R+

= Y1+β.

Using the continuity theorem and the continuous mapping theorem, it is enough to prove that

for all m ∈ N, θ1, . . . , θm ∈ R and 0 =: t0 < t1 < t2 < · · · < tm,

E

(
exp

{
i

m∑

j=1

θj

(
N− 1

1+β

N∑

i=1

(W(i)
tj −W(i)

tj−1
)

)})
=

[
E

(
exp

{
iN− 1

1+β

m∑

j=1

θj(Wtj −Wtj−1
)

})]N

→ E

(
exp

{
i

m∑

j=1

θj(Y1+β(tj)− Y1+β(tj−1))

})
= E

(
exp

{
i

m∑

j=1

θj
√
Y(1+β)/2(Btj −Btj−1

)

})

= E

(
exp

{
−1

2
Y(1+β)/2

m∑

j=1

θ2j (tj − tj−1)

})
= exp

{
−kβ

(
1

2

m∑

j=1

θ2j (tj − tj−1)

) 1+β
2

}
= e−kβ ω

1+β
2
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as N → ∞, where ω := 1
2

∑m
j=1 θ

2
j (tj − tj−1). Note that, using the independence of α and

B, it suffices to show

ΨN := N

[
1− E

(
exp

{
iN− 1

1+β

m∑

j=1

θj(Wtj −Wtj−1
)

})]

= N

[
1− E

(
exp

{
−1

2
N− 2

1+βλ(1 + α)(1− α)−2
m∑

j=1

θ2j (tj − tj−1)

})]

= N

∫ 1

0

(
1− e−ωN

− 2
1+β λ(1+a)(1−a)−2

)
ψ(a)(1− a)β da→ kβ ω

1+β
2

as N → ∞, since it implies that (1−ΨN/N)N → e−kβ ω
1+β
2 as N → ∞. For all ε ∈ (0, 1),

sup
a∈(0,1−ε)

∣∣−NωN− 2
1+β (1 + a)(1− a)−1

∣∣ = ωN
−1+β
1+β (2− ε)ε−1 → 0

as N → ∞. Therefore, by Lemma B.2, substituting a = 1 − N− 1
1+β y, the statement of the

theorem will follow from

(5.20)

lim sup
N→∞

N

∫ 1

1−ε

∣∣∣1− e−ωN
− 2

1+β λ(1+a)(1−a)−2
∣∣∣(1− a)β da

= lim sup
N→∞

∫ εN
1

1+β

0

∣∣∣1− e−ωλ(2−N
− 1

1+β y)y−2
∣∣∣yβ dy <∞,

and

(5.21)

lim
N→∞

N

∫ 1

1−ε

(
1− e−ωN

− 2
1+β λ(1+a)(1−a)−2

)
(1− a)β da

= lim
N→∞

∫ εN
1

1+β

0

(
1− e−ωλ(2−N

− 1
1+β y)y−2

)
yβ dy = ψ−1

1 kβ ω
1+β
2

for all ε ∈ (0, 1). Next we prove (5.20) and (5.21).

For all N ∈ N and ε ∈ (0, 1), using (B.1), we have

∫ εN
1

1+β

0

∣∣∣1− e−ωλ(2−N
− 1

1+β y)y−2
∣∣∣yβ dy 6

∫ ∞

0

∣∣∣1− e−2ωλy−2
∣∣∣yβ dy

6

∫ 1

0

yβ dy + 2ωλ

∫ ∞

1

yβ−2 dy <∞,

hence we obtain (5.20).

Now we turn to prove (5.21). For all ε ∈ (0, 1), we have
∣∣∣∣
∫ ∞

εN
1

1+β

(
1− e−2ωλy−2

)
yβ dy

∣∣∣∣ 6 2ωλ

∫ ∞

εN
1

1+β

yβ−2 dy =
2ωλ

1− β
(εN

1
1+β )β−1 → 0(5.22)
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as N → ∞. Further, using (B.3),

∣∣∣∣∣∣

∫ εN
1

1+β

0

(
1− e−ωλ(2−N

− 1
1+β y)y−2

)
yβ dy −

∫ εN
1

1+β

0

(
1− e−2ωλy−2

)
yβ dy

∣∣∣∣∣∣

6

∫ εN
1

1+β

0

∣∣e−ωλ(2−N
− 1

1+β y)y−2 − e−2ωλy−2∣∣ yβ dy

=

∫ εN
1

1+β

0

e−2ωλy−2∣∣eωλN
− 1

1+β
a
y−1 − 1

∣∣ yβ dy

6 ωλN− 1
1+β

∫ εN
1

1+β

0

e−2ωλy−2

eωλN
− 1

1+β y−1

yβ−1 dy

6 ωλN− 1
1+β

∫ εN
1

1+β

0

e−(2−ε)ωλy−2

yβ−1 dy 6 ωλN− 1
1+β

∫ εN
1

1+β

0

yβ−1 dy

= ωλN− 1
1+β

(εN
1

1+β )β

β
= ωλ

εβN
β−1
1+β

β
→ 0 as N → ∞,

hence, using (5.22), we conclude

lim
N→∞

∫ εN
1

1+β

0

(
1− e−ωλ(2−N

− 1
1+β y)y−2

)
yβ dy =

∫ ∞

0

(
1− e−2ωλy−2

)
yβ dy

=
1

2
(2ωλ)

1+β
2

∫ ∞

0

(1− e−u)u−
3+β
2 du = ψ−1

1 kβ ω
1+β
2 ,

where the last equality follows by Lemma 2.2.1 in Zolotarev [38], thus we obtain (5.21). For

the characteristic function of Y(1+β)/2, see the second proof. ✷

Second proof of Theorem 4.10. By Proposition 4.2, we have

Df- lim
n→∞

(
n−1/2

⌊nt⌋∑

k=1

(X
(1)
k − E(X

(1)
k |α(1)))

)

t∈R+

=

√
λ(1 + α)

1− α
B,

where (Bt)t∈R+ is a standard Wiener process and α is a random variable having a density

function of the form (4.5) with β ∈ (−1, 1) and ψ1 ∈ (0,∞), and being independent of B.

Hence it remains to prove that

Df- lim
N→∞

(T
(N)
t )t∈R+ =

(√
Y(1+β)/2Bt

)
t∈R+

,

where

T
(N)
t :=

1

N
1

1+β

N∑

j=1

√
λ(1 + α(j))

1− α(j)
B

(j)
t , t ∈ R+, N ∈ N,
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and α(j), j ∈ N, and B(j), j ∈ N, are independent copies of α and B, respectively, being

independent of each other as well. By the continuous mapping theorem, it is enough to show

that for all m ∈ N and 0 =: t0 6 t1 < t2 < · · · < tm,(
T

(N)
t1 − T

(N)
t0 , . . . , T

(N)
tm − T

(N)
tm−1

)
D−→
(√

Y(1+β)/2(Bt1 − Bt0), . . . ,
√
Y(1+β)/2(Btm −Btm−1)

)

as N → ∞. By the portmanteau theorem, it is enough to check that for all m ∈ N,

0 = t0 6 t1 < t2 < · · · < tm, and for all bounded and continuous functions g : Rm → R,

E

(
g
(
T

(N)
t1 − T

(N)
t0 , . . . , T

(N)
tm − T

(N)
tm−1

))

→ E
(
g
(√

Y(1+β)/2(Bt1 − Bt0), . . . ,
√
Y(1+β)/2(Btm − Btm−1)

))

as N → ∞. Since

E

(
g
(
T

(N)
t1 − T

(N)
t0 , . . . , T

(N)
tm − T

(N)
tm−1

))

= E

[
E

[
g
(
T

(N)
t1 − T

(N)
t0 , . . . , T

(N)
tm − T

(N)
tm−1

) ∣∣∣α(j), j ∈ N

]]

= E


g



√√√√N− 2

1+β

N∑

j=1

λ(1 + α(j))

(1− α(j))2
(B̃t1 − B̃t0), . . . ,

√√√√N− 2
1+β

N∑

j=1

λ(1 + α(j))

(1− α(j))2
(B̃tm − B̃tm−1)






= E

[
h

(
N− 2

1+β

N∑

j=1

λ(1 + α(j))

(1− α(j))2
, B̃t1 , . . . , B̃tm

)]
,

where (B̃t)t∈R+ is a standard Wiener process independent of α(j), j ∈ N, and h : Rm+1 → R

is an appropriate bounded and continuous function. Hence it is enough to prove that

1

N
2

1+β

N∑

j=1

λ(1 + α(j))

(1− α(j))2
D−→ Y(1+β)/2 as N → ∞,(5.23)

i.e., it suffices to show that λ(1+α)
(1−α)2 belongs to the domain of normal attraction of the 1+β

2
-stable

law of Y(1+β)/2. Indeed, then, by the continuity theorem,
(
N− 2

1+β

N∑

j=1

λ(1 + α(j))

(1− α(j))2
, B̃t1 , . . . , B̃tm

)
D−→ (Y(1+β)/2, B̃t1 , . . . , B̃tm) as N → ∞,

where we additionally suppose that (B̃t)t∈R+ is independent of Y(1+β)/2 as well. Hence, using

again the portmanteau theorem,

E

[
h

(
N− 2

1+β

N∑

j=1

λ(1 + α(j))

(1− α(j))2
, B̃t1 , . . . , B̃tm

)]

→ E

[
h
(
Y(1+β)/2, B̃t1 , . . . , B̃tm

)]

= E

[
g
(√

Y(1+β)/2(B̃t1 − B̃t0), . . . ,
√
Y(1+β)/2(B̃tm − B̃tm−1)

)]
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as N → ∞, as desired. Note that

lim
x→−∞

|x| 1+β
2 P

(
λ(1 + α)

(1− α)2
< x

)
= 0,

and

lim
x→∞

x
1+β
2 P

(
λ(1 + α)

(1− α)2
> x

)
=
ψ1(2λ)

1+β
2

1 + β
.

Indeed, the first convergence follows immediately due to the positivity of λ(1+α)
(1−α)2 , and using

that
λ(1 + α)

(1− α)2
= 2λ

((
1

1− α
− 1

4

)2

− 1

16

)

and 1
1−α > 1, we have for all x > 0,

λ(1 + α)

(1− α)2
> x ⇐⇒ α > 1− 1

1
4
+
√

x
2λ

+ 1
16

=: 1− h̃(λ, x),

and hence

x
1+β
2 P

(
λ(1 + α)

(1− α)2
> x

)
= x

1+β
2

∫ 1

1−h̃(λ,x)
(1− a)βψ(a) da

=

∫ √
xh̃(λ,x)

0

yβψ
(
1− y√

x

)
dy → ψ1

∫ √
2λ

0

yβ dy =
ψ1(2λ)

1+β
2

1 + β
as x→ ∞,

as desired. Indeed, one can use the dominated convergence theorem, since there exists ε ∈ (0, 1)

such that |ψ(x) − ψ1| < 2ψ1 for all x ∈ (1 − ε, 1), and if y ∈ (0,
√
xh̃(λ, x)), then

1− y√
x
∈ (1− h̃(λ, x), 1) and hence, for large enough x, we get

ψ
(
1− y√

x

)
6 3ψ1, y ∈ (0,

√
xh̃(λ, x)).

Since
√
xh̃(λ, x) 6

√
2λ, x ∈ R++, this yields that 3ψ1y

β
1[0,

√
2λ](y), y ∈ R+, serves as

an integrable dominating function for large enough x. Consequently (5.23) holds, see, e.g.,

Puplinskaitė and Surgailis [27, Remark 2.1]. Indeed, the characteristic function of the random

variable Y(1+β)/2 takes the form

E(eiθY(1+β)/2)

= exp

{
−|θ| 1+β

2
Γ(2− 1+β

2
)

1− 1+β
2

ψ1(2λ)
1+β
2

1 + β

(
cos

(
π(1 + β)

4

)
− i sign(θ) sin

(
π(1 + β)

4

))}

= exp

{
−|θ| 1+β

2 Γ
(
1− 1 + β

2

)ψ1(2λ)
1+β
2

1 + β

(
cos

(
sign(θ)

π(1 + β)

4

)
− i sin

(
sign(θ)

π(1 + β)

4

))}

= exp
{
− kβ|θ|

1+β
2 e−i sign(θ)

π(1+β)
4

}
, θ ∈ R.

38



This can be also seen using, for example, Theorem C.3 in Zolotarev [38] (with the choices

α = 1+β
2
, β = 1 , γ = 0 and λ = kβ). ✷

Proof of Theorem 4.11. Since E
(

1
1−α
)
<∞, by Proposition 4.1, we have

1√
N
S̃(N) Df−→ Ỹ as N → ∞,

where the strictly stationary Gaussian process (Ỹk)k∈Z+ is given in Proposition 4.1. Conse-

quently, by the continuous mapping theorem, for all n ∈ N, we get

Df- lim
N→∞

(nN)−
1
2 S̃(N,n) =

(
n−1/2

⌊nt⌋∑

k=1

Ỹk
)

t∈R+

,

and hence it remains to prove that

(
n−1/2

⌊nt⌋∑

k=1

Ỹk
)

t∈R+

Df−→ σB as n→ ∞.

Since the processes
(
n−1/2

∑⌊nt⌋
k=1 Ỹk

)
t∈R+

, n ∈ N, and σB are zero mean Gaussian processes,

it suffices to show that the covariance function of
(
n−1/2

∑⌊nt⌋
k=1 Ỹk

)
t∈R+

converges pointwise to

that of σB as n→ ∞. For all 0 6 t1 6 t2,

Cov

(
n−1/2

⌊nt1⌋∑

k=1

Ỹk, n−1/2

⌊nt2⌋∑

k=1

Ỹk
)

=
λ

n
E

(⌊nt1⌋∑

k=1

⌊nt2⌋∑

ℓ=1

α|k−ℓ|

1− α

)

→ λE

(
1 + α

(1− α)2

)
min(t1, t2) = Cov(σBt1 , σBt2) as n→ ∞,

since one can use the decomposition (5.7) together with

1

n
E

(
α(α⌊nt2⌋−⌊nt1⌋ − 1) + (⌊nt2⌋ − ⌊nt1⌋)(1− α2)/2

(1− α)3

)
→ (t2 − t1)E

(
1 + α

2(1− α)2

)

as n→ ∞. Indeed, by the dominated convergence theorem,

1

n
E

(
α(α⌊nt2⌋−⌊nt1⌋ − 1)

(1− α)3

)
→ 0 as n→ ∞,

where the pointwise convergence follows by
∣∣∣∣
α(α⌊nt2⌋−⌊nt1⌋ − 1)

(1− α)3

∣∣∣∣ 6
1

(1− α)3
,

and (t2 − t1 + 1) α
(1−α)2 serves as an integrable dominating function, since, by Remark 4.5,

E

(
α

(1−α)2

)
<∞, and

1

n

∣∣∣∣
α(α⌊nt2⌋−⌊nt1⌋ − 1)

(1− α)3

∣∣∣∣ =
α(1 + α + α2 + · · ·+ α⌊nt2⌋−⌊nt1⌋−1)

n(1− α)2

6
α(⌊nt2⌋ − ⌊nt1⌋)

n(1− α)2
6 (t2 − t1 + 1)

α

(1− α)2
.
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For the second convergence, first note that, by Proposition 4.2, we have

Df- lim
n→∞

(
1√
n

⌊nt⌋∑

k=1

(X
(1)
k − E(X

(1)
k |α(1)))

)

t∈R+

=

√
λ(1 + α)

1− α
B,

where (Bt)t∈R+ is a standard Wiener process and α is a random variable having a density

function of the form (4.5) with β ∈ (1,∞) and ψ1 ∈ (0,∞), and being independent of B.

Hence it remains to prove that

Df- lim
N→∞

1√
N

N∑

j=1

√
λ(1 + α(j))

1− α(j)
B(j) = σB,

where α(j), j ∈ N, and B(j), j ∈ N, are independent copies of α and B, respectively,

being independent of each other as well. Similarly to the second proof of Theorem 4.10, it is

enough to show that

1

N

N∑

j=1

λ(1 + α(j))

(1− α(j))2
D−→ σ2 as N → ∞.

This readily follows by the strong law of large numbers, since E
(λ(1+α)
(1−α)2

)
<∞ due to Remark

4.5. ✷

Proof of Theorem 4.12. We have a decomposition

S
(N,n)
t = R

(N,n)
t + S̃

(N,n)
t , t ∈ R+,(5.24)

with

R
(N,n)
t :=

N∑

j=1

⌊nt⌋∑

k=1

(E(X
(j)
k |α(j))− E(X

(j)
k )) = ⌊nt⌋

N∑

j=1

(
λ

1− α(j)
− E

(
λ

1− α(j)

))

for t ∈ R+. By Theorem 4.7, for each n ∈ N, Df-limN→∞ N− 1
2 S̃(N,n) exists, hence

(5.25) Df- lim
N→∞

N− 1
1+β S̃(N,n) = Df- lim

N→∞
N

β−1
2(1+β)N− 1

2 S̃(N,n) = 0.

The distribution of the random variable λ(1−α)−1−E(λ(1−α)−1) belongs to the domain of

attraction of an (1 + β)-stable distribution. Indeed, we have

lim
x→∞

x1+β P

(
λ

1− α
− E

(
λ

1− α

)
> x

)

= lim
x→∞

x1+β P

(
α > 1− 1

λ−1x+ E((1− α)−1)

)

= lim
x→∞

1

x−(1+β)

∫ 1

1−(λ−1x+E((1−α)−1))−1

ψ(a)(1− a)β da

= lim
x→∞

−ψ(1− (λ−1x+ E((1− α)−1))−1)(λ−1x+ E((1− α)−1))−β−2λ−1

−(1 + β)x−(1+β)−1
=
ψ1λ

1+β

1 + β
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by L’Hôpital’s rule. Further, using that P(λ(1− α)−1 > 0) = 1,

lim
x→−∞

|x|1+β P
(

λ

1− α
− E

(
λ

1− α

)
6 x

)
= lim

x→−∞
|x|1+β · 0 = 0.

Consequently, for each n ∈ N,

Df- lim
N→∞

N− 1
1+βR(N,n) =

(
⌊nt⌋Z1+β

)
t∈R+

,

see, e.g., Puplinskaitė and Surgailis [27, Remark 2.1]. Indeed, the characteristic function of the

random variable Z1+β takes the form

E(eiθZ1+β)

= exp

{
−|θ|1+β Γ(2− (1 + β))

1− (1 + β)

ψ1λ
1+β

1 + β

(
cos

(
π(1 + β)

2

)
− i sign(θ) sin

(
π(1 + β)

2

))}

= exp
{
− |θ|1+βΓ(1− β)

−β
ψ1λ

1+β

1 + β
e−i sign(θ)

π(1+β)
2

}

= exp
{
− |θ|1+βωβ(θ)

}
, θ ∈ R.

Together with (5.25), we obtain the first convergence.

By Theorem 4.10, for each N ∈ N, Df-limn→∞ n− 1
2 S̃(N,n) exists and hence

Df- lim
n→∞

n−1S̃(N,n) = Df- lim
n→∞

n− 1
2n− 1

2 S̃(N,n) = 0,

and

Df- lim
n→∞

n−1R(N,n) =

(
t

N∑

j=1

(
λ

1− α(j)
− E

(
λ

1− α(j)

)))

t∈R+

.

Based on the above considerations, using the decomposition (5.24) as well, we obtain the second

convergence. ✷

Proof of Theorem 4.13. First note that, since β > 1, by Remark 4.5, Var((1−α)−1) <∞.

Hence, by the central limit theorem, for each n ∈ N,

Df- lim
N→∞

N− 1
2R(N,n) =

(
⌊nt⌋Wλ2 Var((1−α)−1)

)
t∈R+

.

Consequently,

Df- lim
n→∞

Df- lim
N→∞

n−1N− 1
2R(N,n) = (Wλ2 Var((1−α)−1)t)t∈R+ .

By Theorem 4.11, Df-limn→∞ Df-limN→∞ (nN)−
1
2 S̃(N,n) exists, hence

Df- lim
n→∞

Df- lim
N→∞

n−1N− 1
2 S̃(N,n) = Df- lim

n→∞
Df- lim

N→∞
n− 1

2 (nN)−
1
2 S̃(N,n) = 0.

Using the decomposition (5.24), we have the first convergence.
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Similarly, for each N ∈ N,

Df- lim
n→∞

n−1R(N,n) =

(
N∑

j=1

(
λ

1− α(j)
− E

(
λ

1− α(j)

))
t

)

t∈R+

,

and, by the central limit theorem,

Df- lim
N→∞

Df- lim
n→∞

n−1N− 1
2R(N,n) = (Wλ2 Var((1−α)−1)t)t∈R+ .

By Theorem 4.11, we also have

Df- lim
N→∞

Df- lim
n→∞

n−1N− 1
2 S̃(N,n) = 0,

which yields the second convergence using the decomposition (5.24) as well. ✷

Appendices

A Non-Markov property of the randomized INAR(1)

model

The aim of this appendix is to show that the randomized INAR(1) process (Xk)k∈Z+ defined

in Section 4 does not have the Markov property provided that α is non-degenerate. We show

that if α is non-degenerate, then

P(X2 = 0 |X1 = 1, X0 = 0) 6= P(X2 = 0 |X1 = 1),

implying our statement. By the strict stationarity of (Xk)k∈Z+, the conditional independence

of ξ1,1, ε1 and X0 given α, and (4.1)–(4.3), we have

P(X2 = 0 |X1 = 1) = P(X1 = 0 |X0 = 1) =
P(X1 = 0, X0 = 1)

P(X0 = 1)
=

P(ξ1,1 = 0, ε1 = 0, X0 = 1)

P(X0 = 1)

=

∫ 1

0
P(ξ1,1 = 0, ε1 = 0, X0 = 1 |α = a) Pα(da)∫ 1

0
P(X0 = 1 |α = a) Pα(da)

=

∫ 1

0
P(ξ1,1 = 0 |α = a)P(ε1 = 0 |α = a)P(X0 = 1 |α = a) Pα(da)∫ 1

0
P(X0 = 1 |α = a) Pα(da)

=

∫ 1

0
(1− a)e−λ λ

1−a e
− λ

1−a Pα(da)
∫ 1

0
λ

1−a e
− λ

1−a Pα(da)
=

∫ 1

0
e−λ−

λ
1−a Pα(da)∫ 1

0
1

1−a e
− λ

1−a Pα(da)
.
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Similarly, we have

P(X2 = 0 |X1 = 1, X0 = 0) =
P(X2 = 0, X1 = 1, X0 = 0)

P(X1 = 1, X0 = 0)
=

P(ξ2,1 = 0, ε2 = 0, ε1 = 1, X0 = 0)

P(ε1 = 1, X0 = 0)

=

∫ 1

0
(1− a)e−λλe−λ e−

λ
1−a Pα(da)∫ 1

0
λe−λ e−

λ
1−a Pα(da)

=

∫ 1

0
(1− a)e−λ−

λ
1−a Pα(da)∫ 1

0
e−

λ
1−a Pα(da)

.

By Cauchy–Schwarz’s inequality, we have

(∫ 1

0

e−
λ

1−a Pα(da)

)2

6

∫ 1

0

(1− a)e−
λ

1−a Pα(da)

∫ 1

0

1

1− a
e−

λ
1−a Pα(da),

and equality holds if and only if there exists some positive constant C > 0 such that (1 −
a)e−

λ
1−a = C 1

1−ae
− λ

1−a Pα-almost every a ∈ (0, 1), which is equivalent to the fact that there

exists C ∈ (0, 1) such that Pα is the Dirac measure concentrated on the point 1 −
√
C.

Consequently, P(X2 = 0 |X1 = 1, X0 = 0) > P(X2 = 0 |X1 = 1) and equality holds if and

only if Pα is a Dirac measure concentrated on some point in (0, 1), i.e., α is degenerate.

Hence if α is non-degenerate, then the randomized INAR(1) process (Xk)k∈Z+ does not have

the Markov property. If α is degenerate, then (Xk)k∈Z+ is a usual INAR(1) model being a

Markov chain.

B Approximations of the exponential function and some

of its integrals

In this appendix we collect some useful approximations of the exponential function and some

of its integrals.

We will frequently use the following the well-known inequalities:

1− e−x 6 x, x ∈ R,(B.1)

|eiu − 1| 6 |u|, |eiu − 1− iu| 6 u2/2, u ∈ R.(B.2)

The next lemma is about how the inequalities in (B.2) change if we replace u ∈ R by an

arbitrary complex number.

B.1 Lemma. We have

|ez − 1| 6 |z|e|z|, z ∈ C,(B.3)

|ez − 1− z| 6 |z|2
2

e|z|, z ∈ C.(B.4)
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Proof. For any z ∈ C we have

|ez − 1| =
∣∣∣∣z +

z2

2!
+
z3

3!
+ . . .

∣∣∣∣ 6 |z|
(
1 +

|z|
2!

+
|z|2
3!

+ . . .

)

6 |z|
(
1 +

|z|
1!

+
|z|2
2!

+ . . .

)
= |z|e|z|,

|ez − 1− z| =
∣∣∣∣
z2

2!
+
z3

3!
+ . . .

∣∣∣∣ 6
|z|2
2

(
1 +

|z|
3

+
|z|2
3 · 4 + . . .

)

6
|z|2
2

(
1 +

|z|
1!

+
|z|2
2!

+ . . .

)
=

|z|2
2

e|z|,

since 3 · 4 · · · (n + 2) > n! for any n ∈ N. ✷

B.2 Lemma. Suppose that (0, 1) ∋ x 7→ ψ(x)(1− x)β is a probability density, where ψ is a

function on (0, 1) having a limit limx↑1 ψ(x) = ψ1 ∈ (0,∞) (and necessarily β ∈ (−1,∞)).

For all a ∈ (0, 1), let (zN(a))N∈N be a sequence of complex numbers such that

lim
N→∞

sup
a∈(0,1−ε)

|NzN (a)| = 0 for all ε ∈ (0, 1),(B.5)

lim sup
N→∞

N

∫ 1

1−ε0

∣∣∣1− e
λ

1−a
zN (a)

∣∣∣ (1− a)β da <∞ for some ε0 ∈ (0, 1),

lim
ε↓0

lim sup
N→∞

∣∣∣∣N
∫ 1

1−ε

(
1− e

λ
1−a

zN (a)
)
(1− a)β da− I

∣∣∣∣ = 0

with some I ∈ C. Then

lim
N→∞

N

∫ 1

0

(
1− e

λ
1−a

zN (a)
)
ψ(a)(1− a)β da = ψ1I.

Proof. Using dominated convergence theorem, first we check that

lim
N→∞

N

∫ 1−ε

0

(
1− e

λ
1−a

zN (a)
)
ψ(a)(1− a)β da = 0 for all ε ∈ (0, 1).(B.6)

By applying (B.3) and using (B.5), for any ε ∈ (0, 1) and a ∈ (0, 1− ε), we get

(B.7)
∣∣∣N
(
1− e

λ
1−a

zN (a)
)∣∣∣ 6 N

∣∣∣ λ

1− a
zN (a)

∣∣∣e| λ
1−a

zN (a)| → 0

as N → ∞. Further, if ε ∈ (0, 1) and a ∈ (0, 1− ε), then

∣∣∣N
(
1− e

λ
1−a

zN (a)
)∣∣∣ 6 λ

ε
sup
N∈N

sup
a∈(0,1−ε)

|NzN (a)| e
λ
ε
supN∈N supa∈(0,1−ε) |zN (a)| =: Cε,

where Cε ∈ R+. Since
∫ 1

0
ψ(a)(1− a)β da = 1, we have

∣∣∣∣N
∫ 1−ε

0

(
1− e

λ
1−a

zN (a)
)
ψ(a)(1− a)β da

∣∣∣∣ 6
∫ 1−ε

0

Cεψ(a)(1− a)β da <∞.
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Therefore, (0, 1− ε) ∋ a 7→ Cεψ(a)(1− a)β serves as a dominating integrable function. Thus

the pointwise convergence in (B.7) results (B.6). Moreover, for all ε ∈ (0, 1), we have

∣∣∣∣N
∫ 1

0

(
1− e

λ
1−a

zN (a)
)
ψ(a)(1− a)β da− ψ1I

∣∣∣∣

6

∣∣∣∣N
∫ 1−ε

0

(
1− e

λ
1−a

zN (a)
)
ψ(a)(1− a)β da

∣∣∣∣

+

∣∣∣∣N
∫ 1

1−ε

(
1− e

λ
1−a

zN (a)
)
(ψ(a)− ψ1)(1− a)β da

∣∣∣∣

+ ψ1

∣∣∣∣N
∫ 1

1−ε

(
1− e

λ
1−a

zN (a)
)
(1− a)β da− I

∣∣∣∣ ,

where
∣∣∣∣N
∫ 1

1−ε

(
1− e

λ
1−a

zN (a)
)
(ψ(a)− ψ1)(1− a)β da

∣∣∣∣

6 N sup
a∈[1−ε,1)

|ψ(a)− ψ1|
∫ 1

1−ε

∣∣∣1− e
λ

1−a
zN (a)

∣∣∣ (1− a)β da,

with supa∈[1−ε,1) |ψ(a)−ψ1| → 0 as ε ↓ 0, by the assumption. First taking lim supN→∞ and

then ε ↓ 0, using (B.6), we obtain the statement. ✷

C A representation of fractional Brownian motion due

to Pilipauskaitė and Surgailis [23]

We recall an integral representation of the fractional Brownian motion with Hurst parameter

in
(
1
2
, 1
)

due to Pilipauskaitė and Surgailis [23] in order to connect our results with the ones

in Pilipauskaitė and Surgailis [23] and in Puplinskaitė and Surgailis [26], [27].

For all β ∈ (0, 1) let us consider the stochastic process given by

(C.1) B̃1−β
2
(t) :=

∫

R+×R

(f(x, t− s)− f(x,−s))Z(dx, ds), t ∈ R+,

where

(C.2) f(x, t) :=

{
(1− e−xt)/x if x ∈ R++ and t ∈ R++,

0 otherwise,

with respect to a Gaussian random measure Z(dx, ds) on R+ ×R with zero mean, variance

ν(dx, ds) := (2 − β)(1 − β)/Γ(β)xβ dx ds and characteristic function E(eiθZ(A)) = e−θ
2ν(A)/2

for each Borel set A ⊂ R+×R with ν(A) <∞ and θ ∈ R. Note that, by Pilipauskaitė and
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Surgailis [23, page 1014], (B̃1−β
2
(t))t∈R+ is a fractional Brownian motion multiplied by some

constant. In what follows we check that this constant is in fact one. It suffices to show that the

variance of the process defined in (C.1) at time 1 is 1. By (C.1) and (C.2) (see also formula

(2.4) in Pilipauskaitė and Surgailis [23]) one can easily see that the variance of B̃1−β
2
(1) takes

the form

E(B̃1−β
2
(1)2) =

(2− β)(1− β)

Γ(β)

∫ ∞

0

∫ ∞

−∞
(f(x, 1− s)− f(x,−s))2 xβ ds dx,

where, for x ∈ R++ and t ∈ R+,
∫ ∞

−∞

(
f(x, t− s)− f(x,−s)

)2
xβ ds

=

∫ 0

−∞

(
1− e−x(t−s)

x
− 1− e−x(−s)

x

)2

xβ ds+

∫ t

0

(
1− e−x(t−s)

x

)2

xβ ds

=

∫ 0

−∞
e2xs(1− e−xt)2xβ−2 ds+

∫ t

0

(1− e−x(t−s))2xβ−2 ds

=
1

2
(1− e−xt)2xβ−3 +

∫ t

0

(1− e−x(t−s))2xβ−2 ds.

Hence, with repeated partial integration, we have

E(B̃1−β
2
(1)2) =

(2− β)(1− β)

Γ(β)

∫ ∞

0

[
1

2
(1− e−x)2xβ−3 +

∫ 1

0

(1− e−x(1−s))2xβ−2 ds

]
dx

=
(2− β)(1− β)

Γ(β)

∫ ∞

0

(
e−x − 1 + x

)
xβ−3 dx

=
(2− β)(1− β)

Γ(β)

1

2− β

∫ ∞

0

(
−e−x + 1

)
xβ−2 dx

=
(2− β)(1− β)

Γ(β)
· Γ(β)

(2− β)(1− β)
= 1,

as desired.
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[9] E. Gonçalves and Ch. Gouriéroux. Agrégation de processus autorégressifs d’ordre 1. Ann.
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