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Mathematical Literacy and the Application of

Mathematical Knowledge

Csaba Csíkos
Institute of Education, University of Szeged

Lieven Verschaffel
Institute of Education, Katholieke Universiteit, Leuven

One of the most important sources of objectives for learning mathematics

can be summarized as the needs coming from the society in general and

from other disciplines, especially sciences. Therefore, mathematics as a dis-

cipline and as a school subject may shape students’ minds in a way that they

develop a disposition to use their mathematical knowledge in several differ-

ent contexts including other school subjects and everyday out-of-school

problem contexts.

The idea of describing how the mathematical knowledge achieved in

schools can be applied in various contexts and problem spaces is at least of

the same age as the emerging mathematical ideas. Therefore the general the-

oretical fundamentals of the application phenomena will be first shortly pre-

sented in this chapter. In the last centuries, in most European school systems

mathematics as a school subject earned the position of having a central role

in curricula. Since the Ratio Studiorum, when Christopher Clavius exerted

his influence on making mathematics a standard part of the Jesuit core cur-

riculum (see Smolarski, 2002), till today’s core curricula in Europe, there is

a continuous search for better ways in teaching and learning mathematics.

The second part of this chapter will focus on some assessment consider-

ations about the applications of mathematics.

In the third part of this chapter, the characteristics and role of classroom
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mathematics tasks will be analyzed with a special emphasis on word prob-

lems. It is the classroom practice and culture that shape students’ beliefs

about and approaches of different types of word problems. Finally, we aim

to provide a categorization of mathematical word problems in view of de-

veloping a diagnostic evaluation system of mathematical literacy.

Theoretical Considerations

In the history of mathematics and mathematics teaching there were continu-

ous attempts and efforts made in order to bring evidence about the impor-

tance of mathematics in everyday life and in other sciences. These efforts

have often been hindered by the dual nature of mathematics, i.e., the way

mathematical results were published and communicated, and the way math-

ematical thinking and explorations have been actually performed.

The Nature of Mathematical Thinking

Mathematics is often associated with creating theorems, proofs and defi-

nitions. From ancient times, mathematical publications followed strict

rules in presenting mathematical results. These rules are essentially the

rules of deductive implications. The structure of many mathematical

publications even today follows the sequence of definition – theorem –

proof. However, as early as in the seventeenth century Descartes claimed

that the ancient Greeks in fact yielded their theorems in an inductive way

while they published their results according to strict deductive rules. The

duality of how theorems are presented and how they have been achieved

can even confuse laymen who often consider mathematician as people

who create theorem and prove them. Nevertheless, Rickart (1996) em-

phasizes - following in Poincaré’s and Hadamard’s footsteps – that cre-

ativity plays an essential role in mathematical discovery. Conscious hard

work and creative experiences go in tandem when doing mathematics.

Although different facets of mathematical thinking go in tandem in doing

mathematics, one or the other may noticeably appear, depending on the

task to be solved. “Even inside the profession we classify ourselves as ei-

ther theorists or problem solvers.” (Guy, 1981, p. vii.) Ernest (1999) sug-



gests keeping a balance between explicit propositional and tacit mathe-

matical knowledge in educational contexts.

The key for understanding how school mathematics reflects different

philosophical approaches can be found in Freudenthal’s oeuvre. What stu-

dents should learn in schools is to do mathematics and not primarily to ac-

cept the products of (mathematicians’) mathematical activity. Doing mathe-

matics requires students to gather experiences, form hypotheses, and above

all, to learn to think mathematically. “The learner should reinvent

mathematising rather than mathematics; abstracting rather than abstrac-

tions; schematizing rather than schemes; formalizing rather than formulae;

algorithmising rather than algorithms; verbalizing rather than language…

(Freudenthal, 1991, p. 49). Contrary to the historically developed DTP order

(definition – theorem – proof), for mathematics lessons a reversed order

should be applied: exploration, explanation, formalization (Hodgson, &

Morandi, 1996).

A Mathematical Modeling Perspective

“The emergence of the discipline Mathematics Education in the beginning

of the 20th century had a clear political motivation” (Sriraman & Törner,

2008, p. 668.) The main supporters of different movements were of eco-

nomic nature. There are two mathematics education movements in the twen-

tieth century that have strong influence on the principles and practices of

even today’s mathematics education. The New Math movement aimed at

emphasizing mathematical structure through abstract concepts. Following

the works of the Bourbaki group, the New Math movement has resulted in

highly formalized textbooks, and initiated school curriculum and teacher

education reforms. The New Math movement emphasized the whys and the

deeper structure of mathematics, instead of mindless rigidity of traditional

mathematics (Sriraman & Törner, 2008). That is why it is worth evaluating

that movement in a more positive way instead of merely criticizing it from a

postmodern math education perspective. This movement initiated studying

the similarities between mathematical and psychological (hypothetico-de-

ductive) structures as well.

The Realistic Mathematics Education (RME) movement is “a reaction to

both the American New Math movement … and the then prevailing Dutch
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… ‘mechanistic mathematics education.“ (van den Heuvel-Panhuizen,

2001, p. 1). The RME grew out of Hans Freudenthal’s initiations: founding

the Wiskobas project (in Dutch: ‘mathematics in primary school’) and later

the Freudenthal Institute, and at the same time fertilizing mathematics edu-

cation with ideas such as that student should develop and apply concepts and

tools for daily life problem situations that are meaningful for them (van den

Heuvel-Panhuzien, 2003). As already indicated in the above-mentioned

quotation from Freudenthal, realistic mathematics educations aims at the

construction by children of their own mathematical knowledge, emphasiz-

ing human activity as mathematizing both within the mathematical structure

and between learned knowledge and context situations (see Treffers, 1993;

Wubbels, Korthagen & Broekman, 1997). Since in English and in other lan-

guages the translation of the term ‘realistic’ will be associated with ‘reality’

there were attempts to clarify how reality and realistic should be defined in

mathematics education settings (Greer, 1997; Säljö, 1991a, 1991b). As van

den Heuvel-Panhuizen (2001a) emphasizes the original Dutch term ‘zich

realizeren’ means ‘to imagine’, therefore realistic mathematics does not al-

ways has the real world as context for tasks; objects of the fantasy world

(which can be imagined, represented, and therefore modeled) can form an

equally appropriate context for mathematization. The current interpretation

of the term ‘realistic’ is a reference to what is experientially real

(Gravemeijer & Terwel, 2000; Linchevski & Williams, 1999), declaring

that not every everyday-life problem will be necessarily experientially real

for the students.

Even though there are signs that there was greater emphasis on links to

reality fifteen years ago than there is now in the research and development

work of RME (see van den Heuvel-Panhuizen, 2000), the strong and rele-

vant connections between real-life contexts and students’ mathematical

learning is still a major characteristic of RME. Treffers (1993) developed

the concepts of horizontal and vertical mathematization. The term

mathematization was developed by Freudenthal (see van den Heuvel-

Panhuizen, 1996, 2000, 2001a, 2001b, 2003). Mathematization refers to

the processes of mathematical activity; since it is not mathematics as a

closed system that should be taught in school, but rather the activity of or-

ganizing matter from reality. Treffers’ horizontal mathematization con-

cept refers to the process of bringing mathematical tools forward in order

to organize and solve daily life problems. Vertical mathematization refers
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to inner mental reorganization of concepts and operations within the math-

ematical system. Horizontal and vertical mathematization processes are

intertwined in students’ mathematical activities, and mathematization

“contains, in fact, all of the important aspects of the RME educational the-

ory” (van den Heuvel-Panhuizen, 1996, p. 11.).

One crucial point in RME is introducing mathematical models (in a very

broad sense of this word). Creating and developing models for problem situ-

ations is very different from searching for models of problem situations (see

van den Heuvel-Panhuizen, 2001a). Effective use of several models in dif-

ferent age-groups and in different content areas has been evidenced.

Gravemeijer (1994) investigated the empty number line as a powerful math-

ematical model for several reasons. By means of visualization it enables for

using and explaining various strategies, e.g., subtracting 49 can be substi-

tuted by subtracting 50 and adding one, or in case of subtracting a relatively

large number (e.g., 51 – 49) it may be easier to step forward from the smaller

quantity to the larger quantity.

Klein, Beishuizen and Treffers (1998) added that it is not the empty num-

ber line alone that contributes to the success of their development program,

but the way it was used, i.e. stimulating and discussing different solution

patterns in a positive classroom climate. Keijzer and Terwel (2003) studied

the understanding of fractions, and also successfully used the number line

model (also by means of computer games) to develop understanding. Door-

man and Gravemeijer (2009) conducted an experiment among 10th grade

students in the field of velocity problems, using discrete graphs as models

for reasoning about the relation between displacement in time intervals and

total distance traveled. An extension of the RME principles to higher school

grades had been previously demonstrated by Gravemeijer and Doorman,

(1999) in the field of calculus. In that case determining velocity from

time/interval graphs became a model for reasoning about integrating and

differentiating arbitrary functions. Van Garderen (2007) argues that dia-

grams as mathematical models provide the flexibility for children with

learning disabilities to generalize what they have learnt in a given situation

to another situation.

The realistic mathematics approach proved to be useful also for low at-

taining students. The principles and suggestions concerning RME for low

attaining students have been reviewed by Barnes (2005). Low attaining stu-

dents and even special education need students profited more from so-called

Mathematical Literacy and the Application of Mathematical Knowledge
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guided instruction, i.e., when much more space is provided for individual

contributions, than from a so-called structured or direct instructional ap-

proach (Kroesbergen & van Luit, 2002). However, in general, the relation-

ship between mathematical instructional approaches (namely, traditional

and realistic approaches) and mathematical proficiency has not been un-

equivocally evidenced. In general, there are larger differences in pupil per-

formance within a particular mathematics instructional approach than be-

tween two different approaches (Koninklijke Nederlandse Akademie van

Wetenschappen, 2009).

The Curricular Shaping of Mathematical Literacy

Scientific discourse on the role and importance of curricular aims and objec-

tives has recently been permeated by a range of different curricula as de-

fined according to different levels or phases of the teaching-learning pro-

cess. When analyzing research-based curriculum development, Clements

(2008) narrows the term to available curriculum, i.e. curriculum for which

teaching materials exist. There is a usual trinity of curriculum terms used in

the (mathematics) education literature: declared, implemented and achieved

curriculum. The declared curriculum refers to educational documents set

out in different levels of the educational system: national core curriculum,

local curricula etc. The implemented curriculum refers to the processes ac-

tually carried out in schools, and achieved curriculum refers to students’

performance on tests measuring curricular objectives.

In Stein, Remillard and Smith (2007), a diagram shows the relationships

between curriculum-related variables including student learning. Although

the sequence of the above-mentioned three curricular concepts is straight-

forward, how these concepts can transform into each other can be explained

by several factors. Figure 2.1 also points to the complexity of factors ex-

plaining the transition between curricular concepts, listing mutually and

necessarily intertwined phenomena as teachers’ beliefs, teachers’ profes-

sional identity, and higher system-level variables as organizational and pol-

icy aspects.
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Figure 2.1 Relationships between written, intended and enacted curricula,

and student learning (Source: Stein, Remillard & Stein, 2007, p. 322)

Some mathematics task-related factors concerning curricular shaping of

knowledge are discussed in Henningsen and Stein’s (1997) study. There are

at least two steps in between the tasks formed on the basis of the declared

curriculum and students’ learning outcomes (i.e., the achieved curriculum).

Mathematics tasks are set up by the teachers according to their implemented

curriculum, and mathematics tasks are in a further step implemented by the

students in the classroom. The transition between teacher and student imple-

mentations as mentioned in the previous sentence is influenced by several

factors including general classroom norms and content-specific

sociomathematical norms (Yackel & Cobb, 1996), and teachers’ instruc-

tional dispositions. The importance of teachers’ beliefs and instructional
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dispositions will be illustrated in the chapter part entitled “tasks measuring

mathematical literacy in the classroom”.

In this section we focus on examples from national (declared) curricula,

since in some way or another, through several direct and indirect factors, na-

tional curricula have their impact on both implemented and achieved curric-

ula. The following examples express how in the last decades our curricula

declared and emphasized the importance of approaching classroom-based

mathematical knowledge and the mathematical knowledge that is transfer-

able to different types of problems and to other school subjects.

Characteristics of Core Curricula in Mathematics

Before introducing the current National Core Curriculum, the so called “Na-

tional Curriculum ‘78” had great impact on the Hungarian school system not

only because of its descriptive nature (this national curriculum was compul-

sory for every schools and there were no local curricula) but to the progres-

sive changes it introduced – among others in the field of mathematics. The

mathematics part of the national curriculum followed the structure of other

parts of the curriculum, i.e. there were aims, objectives and contents formu-

lated for grades 1–4 and grades 5–8, but C. Neményi, Radnainé and Varga

(1981) defined overarching intervals for curricular objectives: the divisions

of grades 1–3 and grades 4–5 expressed their beliefs that the necessarily

continuous developmental processes in students’ mathematical thinking

should not be separated into two formally distinct stages at the end of the

fourth grade (which is a formal dividing line in Hungarian educational sys-

tem between lower and upper grades of the primary school).

Among the general objectives of the National Curriculum ’78 we found

motivation in the sense that students are expected to be interested in, and be

fond of mathematics both because of external reasons like utility and appli-

cability and because of internal reasons like harmony, truth and beauty in

mathematics. (p. 262). According to Aiken (1970), attitudes towards mathe-

matics in adulthood are determined by childhood experiences, and grades 4

to 6 are of crucial importance in forming attitudes. In Hungary, a nationwide

analysis revealed that students’ attitudes towards mathematics are of medio-

cre level (Csapó, 2000).

Other curricular objectives present in the National Curriculum ’78 pay
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special attention to student characteristics of a cognitive nature. As for the

application of mathematical knowledge in different context, the following

objectives were formulated.

In grade 4 and 5 “judgments about (discussion and defending of)

unambiguity of tasks, whether a task contain redundant data, incoherent

conditions, and whether a given solution process is suitable.” (p. 262.)

Among the more concrete objective that are connected to a given grade, in

grade 5, we found “ability to determine what data are redundant, and what

data should be presented in a word problem”, an objective that usually (al-

beit implicitly) implies horizontal mathematization processes. By the end of

grade 3, students are required to “be proficient in gathering and organizing

data of a word problem. Students must be able to find an appropriate mathe-

matical model (drawing, displaying, operations, open statements), and to

solve a word problem by means of that model or by means of trial and error”

(p. 283.) The latter objective more explicitly refers to the need of horizontal

mathematization in word problem solving.

The National Core Curriculum (Nemzeti alaptanterv; first version: 1995,

latest version: 2007) leaves more space for school autonomy, and formu-

lates nationwide curricular objective more loosely and more generally. It is

the local curricula that have to elaborate the general nationwide curricular

aims and objectives. In line with current trends in international system-level

survey requirements, the definition of ‘mathematical competence’ contain

as important element that “the individual is able to apply basic mathematical

principles and processes in acquiring knowledge and in solving problems in

daily life, at home and at the workplace.” (p. 9.) Most of the age-related ob-

jectives in the National Core Curriculum are attached to more than one – two

year long each – age intervals.

The structure of the NCC objectives follows the two year long interval

scheme, i.e. the first milestone in objectives is the end of the second grade, the

second milestone is the end of fourth grade etc. The second aspect of the cur-

ricular objectives in NCC is the sub-domains of mathematical literacy. One of

the sub-domains is labeled as “Application of knowledge”. This sub-domain

contains curricular objectives explicitly referring to daily life situations and

other school subjects. The objective of applying mathematical knowledge in

daily life situations is prescribed from the third age cohort (i.e., from grade 5)

to grade 12 throughout all grades. The current evaluation framework may and

should address the importance of this objective from as early as the first grade
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of schooling. The relation between knowledge acquired in the classroom and

possible applications in real life situations should be strengthen by means of

both instructional and evaluation methods.

As Hiebert et al. (1996, p. 14.) warns, “the tension between acquiring

knowledge and applying it is not special to mathematics”. “The separation

of school learning from ‘everyday life’ has become a problem receiving sig-

nificant attention by researchers focusing on the sociocultural nature of cog-

nition” (Säljö, 1991a). However, according to Hiebert et al., an emphasis on

the application dimension of knowledge may result in less predictable cur-

ricula and teachers may worry about the loss of important information, i.e.

not covering some parts of the curriculum because of working with time

consuming application tasks. The characteristics and problems of math

teacher education cannot systematically be reviewed here, albeit some fea-

tures are highlighted by Szendrei (2007) who reviewed tendencies and ef-

forts in Hungarian mathematics education and mathematics teachers educa-

tion research from 1970. One of her most important suggestions is that in

math teacher training more time should be dedicated to the didactics of

mathematics – currently much stronger emphasis is put on the teaching of

mathematics itself.

Applications of and Demand on Mathematical Knowledge in other
School Subjects

Historically, mathematics fulfilled a leading role in the development of sci-

ences. As Maddy (2008) expresses, till the seventeenth century, great think-

ers of those times could not separate mathematics and science. It was the

nineteenth century when mathematicians began to develop concepts that

had no direct physical meaning. The historical development of mathematics

and sciences still has its effects on school curricula and on classroom prac-

tice. Interestingly, the Hungarian National Core Curriculum (Nemzeti

Alaptanterv, 2007) does not explicitly mention the terms mathematics or

mathematical when detailing the learning objectives of the cultural domain

“Man and nature”. However, within the cultural domain “Our Earth and en-

vironment”, there are several points in which the role of mathematical abili-

ties (competencies) in geographical and environmental knowledge acquisi-

tion is emphasized. There are three main clusters described in which the im-
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portance and role of mathematics can be understood: (1) numerical skills for

measurements and data handling, (2) spatial intelligence for spatial orienta-

tion and (3) logical reasoning, especially in understanding complex spatial

and environmental systems.

In sum, there are unexpectedly few explicit relations between mathemat-

ics and science objectives in the Hungarian NCC. Of course, there are con-

nections made by teachers between science topics and mathematical prereq-

uisite knowledge, but Pollak’s (1969, p. 401) older critical comment that

“the student is typically not given the opportunity to participate in making

the abstraction from the physical reality to the mathematical model” still ap-

plies to the current classroom practice. Some changes are expected to appear

in the near future, in part due to the Rocard-report (High Level Group on

Science Education, 2007) on inquiry-based learning and the projects just

have started like PRIMAS (Promoting Inquiry in Mathematics and Science

Education).

The Definition of Mathematical Literacy in the PISA Studies

The PISA (Programme for International Student Assessment) studies aim at

defining and measuring students’ knowledge and skills in important areas as

mathematical, reading and scientific literacy. It was the PISA 2003 study

that focused on mathematical literacy (OECD, 2004). This document em-

phasizes that the “literacy approach” expresses the intention to define and

assess mathematical knowledge and skills not in terms of mastery of the

school curriculum, but in terms of readiness for full participation in society.

Based on the more general economic definition of “human capital”, the

PISA studies define mathematical literacy as follows (OECD, 2003, p. 24):

“Mathematical literacy is an individual’s capacity to identify and un-

derstand the role that mathematics plays in the world, to make

well-founded judgments and to use and engage with mathematics in

ways that meet the needs of that individual’s life as a constructive, con-

cerned and reflective citizen.”

The components of this definition are further elaborated in the

above-mentioned document, e.g., the term “world” refers to natural, social

and cultural objects, and it is further clarified by referring to Freudenthal’s

oeuvre. The system of the PISA mathematical tasks is based on the above
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definition of mathematical literacy. Students have to solve tasks belonging

to different content, process and context dimensions. Consequently, the cri-

terion of “use and engagement with mathematics” points to the need of mas-

tering mathematical knowledge applicable in different content domains, on

different competency levels and in different contexts. The term “reflec-

tivity” calls forth building awareness and meta-representations fostering

knowledge transfer processes across domains (Adey et al., 2007).

The importance of the PISA studies and the further possibility of using

their results in evidence-based policy making has been convincingly evi-

denced by several secondary analyses (e.g., see Baumert et al., 2009).

Tasks Measuring Mathematical Literacy

In this section we analyze how classroom tasks of mathematical literacy are

used and what characteristics they have. From an educational evaluation point

of view, tasks of formative evaluation will be discussed, i.e. tasks that are em-

bedded in the teaching-learning process in order to develop students’ mathe-

matical understanding. We focus on tasks of mathematical literacy where the

definition of mathematical literacy is taken from the PISA studies. With re-

gard to the application-related objectives of mathematical knowledge, the

context dimension of PISA can be understood as the application of mathemat-

ical knowledge in different situations (OECD, 2006).

The PISA literacy approach (OECD, 1999) requires students “be in-

volved in the full mathematical modeling cycle” (Palm, 2009, p. 3), solving

tasks that address even out-of-school settings. Although the PISA mathe-

matical literacy has been worked out for measuring 15 year old students’

achievement, as we would like to emphasize, even young children’s mathe-

matical literacy can be improved and measured in different contexts, in dif-

ferent fields of application.

Characteristics of Classroom Mathematics Word Problems

In this section we restrict our analysis of mathematical tasks that are relevant

from the aspect of application of mathematical knowledge. Since the appli-

cation of mathematical knowledge usually requires the use of textual elabo-
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ration (at least in the phase of posing the problem), word problems will be in

the focus of our analysis.

“Word problems can be defined as verbal descriptions of problem situa-

tions wherein on or more questions are raised the answer to which can be ob-

tained by the application of mathematical operations to numerical data

available in the problem statement.” (Verschaffel, Greer & De Corte, 2000,

p. ix.)

Historically, word problems fulfilled two interfering roles during the last

several centuries. From as early as ancient river valley civilization times,

mathematical word problems provided the means for mastering arithmetical

skills and at the same time providing tools for solving daily life problems

that were of crucial importance in a certain historical context. Work of an-

cient Egyptian workers or computations necessary to be a successful Vene-

tian merchant required both high-level arithmetical skills and strong con-

nections between problems arisen from daily life and between mathematical

prototype examples (see Verschaffel, Greer & De Corte, 2000). This duality

of the functions of word problems has lived on till today, and the interfer-

ence and the state of being intertwined result in questions about the effective

use of word problems in classrooms.

The importance of word problems in improving the applications of math-

ematics has been justified by Pollak (1969, p. 393) in the following way:

“How does the student become involved in applications of mathematics?

Throughout most of his education, mainly through … ‘word’ problems”.

Types of classroom mathematical word problems may be grouped and

analyzed according to textual, semantic and mathematical features they

have. Educated people can easily distinguish among different types of word

problems. As Säljö (1991b) pointed out, even the twentieth century reader

can easily recognize the genre of a mathematical word problem text, and

may be capable to handle texts like the following one from 1478:

If 17 men build 4 houses in 9 days, how many days will it take 20 men to
build 5 houses?

As long as the solver knows that there exist a direct proportional relation

between the number of men at work and the number of houses being built,

“our familiarity with this genre leads us to recognize that the extra-linguistic

activity that is being referred to – building houses – is, if not accidental, at

least not central to the task as an exercise in elementary arithmetic.” (Säljö,

1991b) The content of this task can be varied without restraint, and it is not
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necessary to know any house-building technologies or team working

method to solve the task. What is more, it would be disadvantageous to start

a deep semantic analysis of the reality of task variables. “The pseudo-real

contexts … encourage students to see school mathematics as a strange and

mysterious language” (Boaler, 1994, p. 554.). The micro-worlds of word

problems (this term is borrowed from Lave, 1992) belong to the same genre

of texts, a genre that was caricatured two centuries ago by Flaubert writing

his letter about the ill-famed ‘How old is the captain?’ problem.

Boaler (1994) criticized the so-called pseudo-real type of mathematics

word problems from a feminist point of view. Although many tasks are

equally strange for both boys and girls, in Boaler’s research girls suffered

more from pseudo-real context tasks in traditional learning environments

than boys. In her own intervention studies, this traditional approach for ig-

noring the role of content is seriously challenged and uncovered. The main

problem concerning the context of school mathematics word problems is

suspending reality and ignoring common sense due to entering the genre of

word problem texts. According to Boaler (1994), this difficulty can be over-

come by changing instructional methods towards a process-based learning

environment. Process-based learning environments, where all students

work on open-ended problems and are encouraged to investigate and to dis-

cover mathematics, proved to lessen sex differences in mathematical

achievement (see also Boaler, 2009).

Classroom mathematics word problems may have another facet that hinders

students’ development. In the field of learning fractions, Mack (1990) has re-

vealed that the sequence of tasks does not correspond to the sequence how stu-

dents’ prior knowledge would help understanding fractions. Concretely, six

grade student have ample prior experience about fractions, and they often use

partitioning (i.e., dividing quantities into pieces), and thus they can relatively

easily understand improper fractions (i.e., when the numerator is greater than

the denominator). However, tasks containing improper fractions are usually left

to the end of the fraction chapters in the textbooks.

A similar problem has been found with multiplication by Lampert (1986).

She emphasizes that in students’ mind multiplication is more complex than

repeated addition. If we limit though instruction one’s mental model about

multiplication to additive compositions, the student may fail later in under-

standing multiplications to continuous quantities. Lampert’s and Mack’s re-

search results nicely support more general recent principles of mathematics
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education like the RME mathematization concept. Schoenfeld’s (1988) her-

etic standpoint about the disaster of well taught lessons tells the same story:

carefully performed sequence of steps in constructing mathematics gives

the message to students that it is the (mathematical) accuracy that counts

when doing mathematics. How students’ experiences can provide unex-

pected results in mathematical word problems were documented in research

on child street vendors (Carraher, Carraher & Schliemann, 1985; Saxe,

1988). Although from a mathematical aspect larger natural numbers are

more difficult to add and subtract, children having experiences with the in-

flated Brazilian currency were better in adding numbers that could be

matched with real prices even if these numbers were relatively large.

Classroom word problems were categorized in several investigations ac-

cording to features that are both mathematical and of cognitive representa-

tion nature. As far as additive structures are concerned, the following types

of simple word problems were identified: combine, compare, change and

equalize problems (see Radatz, 1983; Riley & Greeno, 1998; Jitendra, Grif-

fin, Deatline-Buchman & Sczesniak, 2007; Morales, Shute & Pellegrino,

1985).

Independently of the task content, students strive for categorizing word

problems, and driven by their beliefs about the solvability of word prob-

lems, form different strategies to cope with different types of problems. This

tendency to categorize problems is not per se a problem, since recognizing

the common structure of superficially varying tasks is an important charac-

teristic of true expertise in a given domain (see e.g., Sternberg & Frensch,

1992). However, when finding the operation to be computed and the data to

be matched with that operation are generally sufficient for solving a task, it

may create blind alleys for students in their mathematical development.

Verschaffel, Greer and De Corte (2000) analyze this so-called superficial

schema of word problem solving, comparing it to the schema of genuine

mathematical modeling. The crucial point is whether the student builds a sit-

uation model by means of deep understanding of the problem situation, or

(s)he skips building such a situation model and jumps immediately to a

mathematical model deemed to be appropriate – based on superficial task

characteristics. Illustrating and documenting those blind alleys in word

problem solving the reader should consult Verschaffel, Greer and De Corte

(2000). A Hungarian study brought further evidence about the presence and

strength of superficial word problem solving strategies (Csíkos, 2003).
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One important aspect of using word problems in classrooms is teachers’

beliefs and attitudes towards realistic word problems. “The teachers seem to

believe that the activation of realistic context-based considerations should

not be stimulated but rather discouraged in elementary school mathematics”

(Gravemeijer, 1997, p. 391. – italics in original text). Verschaffel, De Corte

and Borghart (1997) empirically documented pre-service teachers’ disposi-

tion towards giving non-realistic reactions to simple arithmetic word prob-

lems themselves as well as their tendency to give higher marks to non-realis-

tic than to realistic interpretations and solutions of word problems by stu-

dents.

Sociomathematical Norms, Contextual and Content Effects

The term “sociomathematical norms” was introduced by Yackel and Cobb

(1996). These norms, which are (in contrast to the broader social norms) by

definition restricted to the curricular domain of mathematics, are derived

from individual and group mathematical activities (classroom practices).

Classroom teachers as representatives of the mathematical community

(Yackel and Cobb’s experiment was carried out in second grade class-

rooms) have a crucial role in establishing norms about mathematics and its

teaching and learning like what an appropriate mathematical problem is,

what an appropriate response to a mathematical task is, how the acceptable

forms of explanation and argumentation look like, etc. These norms can

vary from classroom to classroom, but “sociomathematical norms are estab-

lished in all classrooms regardless of instructional tradition” (p. 462).

One important aspect of sociomathematical norms is whether acceptable

mathematical explanations in a classroom are mathematical or status-based.

Many children tend to infer that their answer is incorrect as soon as the teacher

questions it. This norm can easily lead to rigid and false beliefs about the na-

ture of mathematical problem solving and argumentation. Although the anal-

ysis of children’s mathematical beliefs is beyond the scope of this chapter, it is

students’ mathematical beliefs that take their share in explaining difficulties

in the application of their mathematical knowledge in different contexts and

settings (e.g. in mathematics in streets versus in schools, see Carraher et al.,

1985). One strong belief revealed in several studies is that a mathematical task

always has (only) one right solution, and there is (only) one right way to find
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that solution (see for example Reusser & Stebler, 1997; Verschaffel, Greer &

De Corte, 2000; Wyndhamn & Säljö, 1997 ).

How sociomathematical norms in general and norms about the role of re-

ality in word problem solving in particular develop can be understood in the

light of some theories belonging to sociology and linguistics. Cooper (1994)

has successfully used Bernstein’s educational knowledge codes, distin-

guishing between common sense knowledge and school knowledge (also

called everyday and esoteric knowledge, respectively). According to

Bernstein’s argument, children are very early in their school career discour-

aged from connecting common sense knowledge and school knowledge.

Even today it can be revealed that school success depends to some extent on

students’ willingness and capacity to disclose common sense knowledge as

a source of information in mathematics problem solving. Cooper and Dunne

(1998) applied both Bernstein’s and Bourdieu’s insights about the possible

social class differences in school (and mathematics) achievement. These

differences can be attributed to a relative lack of access to the cultural re-

sources demanded in school situations. Bourdieu’s powerful phenomenon

of “feel for the game” could be applied in explaining social class differences

in some standardized mathematics items. One striking example is the

so-called Tennis item depicted in Figure 2.2.

David and Gita’s group organize a mixed double tennis competition. They need
to pair a boy with a girl. The put the three boys’ names into one bag and all the
three girls’ names into another bag.

Find all the possible ways that boys and girls can be paired.
Write the pairs below. One pair is already shown.

Rob and Katy
…

Figure 2.2 The Tennis item. Source: Cooper and Dunne, 1998, p. 132.
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Detailed analyses of students’ achievements and interview transcripts

have shown how the “feel for the game” phenomenon explains social class

differences. For esoteric mathematical reasoning, it is clear that children’s

names and supposed nationality is not a relevant consideration to be taken

account of. About one quarter of students aged 10–11 years produced only

three pairs instead of the mathematically correct nine ones. However, these

children produced three “realistic” pairs in a sense that the three pairs were

distinct; each name was used only once. According to Cooper and Dunne,

this type of tasks used in evaluation settings raises problems of equity, i.e.

equal opportunities in education. How in general mathematics word prob-

lems generate inequities (in terms of gender, social class, etc.) is analyzed

and criticized also by Boaler (2009).

According to other empirical results, in grade 3, word problems of the

story problem type (i.e., where figures and relations are embedded in a nar-

rative story) are challenging for students (Jitendra, Griffin, Deatline-

Buchman & Sczesniak, 2007). Nevertheless, in grade 3, word problem solv-

ing is a useful indicator of general mathematical proficiency (Jitendra,

Sczesniak & Deatline-Buchman, 2005)

The role of culture in mathematics achievement incorporates the role of

language competence. To understand mathematical word problems one has

to be capable semantically analyze the linguistic components of a task, and

furthermore, to identify important and redundant parts. Elbers and de Haan

(2005) studied multicultural classrooms in which language components of

mathematical word problems are of more peculiar importance. They found

that language problems in understanding texts were not solved by means of

referring to the everyday meaning of words, but conversations (and stu-

dents’ help-seeking behavior) focused on the special meaning of terms they

have in the context of a mathematical lesson. The priority of understanding

word problem text genre and context over pure semantic understanding of

text cues have been further supported by Morales, Shute and Pellegrino

(1985) whose study revealed no language effect on either solution accuracy

or on the ability of categorizing math word problems – their subjects were

Mexican-American. Nevertheless, well-documented results prove that the

linguistic features of a word problem influence to certain extent the solution

process (e.g. the term ‘of these’ may influence whether an appropriate men-

tal representation is built, see Kintsch, 1985).

Two effective strategies to promote connections between students’ men-
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tal representations and learning objectives to meet can be: rewording the

word problem, or personalizing it. In an investigation by Davis-Dorsey,

Ross and Morrison (1991) it has been revealed that fifth grade students prof-

ited from the personalization of the task (i.e., incorporating personal infor-

mation about the learner) and second grade students profited from both per-

sonalizing and rewording the content (i.e., making the text more explicit,

helping to translate its content into mathematical terms). In this experiment,

word problems that could be considered as mathematically identical, did

differ in their contextual and content features.

Another – even more radical – possible change in improving classroom

environment is the use of reciprocal teaching in mathematics. Magdalene

Lampert (1990) adapted the instructional method called reciprocal teaching

from reading education (see also van Garderen, 2004). The heart of this

method is deliberately altering the roles and responsibilities of the teachers

and students in the classroom. She notes that this change requires changes

also in tasks that define mathematical lessons. As for defining different con-

texts in which the application of mathematical knowledge is claimed and ex-

pected, we follow Light and Butterworth (1992) who gave a rather broad

definition: the context of a task consists of several layers of information re-

lated to the task: physical, social and cultural settings. Tasks with the same

mathematical structure and with the same content can be solved differently

according to changes in the context. However, as Verschaffel, Greer and De

Corte (2000) illustrate, the effects of context changes, in case of a special

class of word problems context changes, may result in only slightly different

levels of student achievement. These context changes involved warning

messages at the top the paper and pencil tests or embedding the task in a test

that contain puzzle type tasks. These slight changes may suggest that con-

text changes more radical than staying within the paper and pencil method-

ology may have stronger influence on students’ solution patterns.

The content of a task can be defined as taking the definition of context as a

starting point. We also borrow the expression ‘noun term’ from Kintsch and

Greeno’s (1985) seminal article. There is an assumption widely accepted (or

at least used) in the mathematics education community: word problems

should fulfill the role of providing a parade-ground for mastering arithmetic

skills. According to this tradition, changing the content of a task should not

necessarily influence students’ achievement; what is more, students are ex-

pected to develop transfer skills enabling them to solve tasks with the same
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deep mathematical structure equally well, independently of the current con-

tent elements of he tasks. It should make no odds whether the noun terms of

a task originate in the micro-worlds of football or fashion or whether some

superficial changes are made in the formulation or the placement of the

givens and/or the question.

A Taxonomy of Tasks of Mathematical Literacy

In this section a categorization of mathematical tasks will be proposed.

There are many aspects that can be starting points for different categoriza-

tions. In international system-level surveys (see e.g., OECD, 1999) there is

usually a multidimensional model in which tasks are classified according to

mathematical content, thinking processes required, and task format. In the

PISA studies (see OECD, 2003) the context of the task appeared as a new di-

mension. The existence of the context dimension and the four values of this

scale can be considered as an expression of an educational policy intention

of paying ample attention at the applied side of mathematics and of covering

a wide range of topics in assessing mathematics literacy.

When applying two or three dimensions (e.g. mathematical content, con-

text, and competency cluster in PISA 2003) and the concrete values of each

dimension, a rectangle or cuboid can be used as a model of which there are

several cells representing different types of tasks. Now we provide a cate-

gory-system for an ‘application’ dimension of mathematical knowledge.

This categorization has its precedents in part in the PISA study contextual

dimension, but mainly relies on the horizontal mathematization idea of the

RME movement.

Challenges and Difficulties in Developing a Category System for
Application Tasks

The logic and basis for this categorization is in line with Erikson’s (2008)

idea of developmental stages in arithmetical thinking. Different develop-

mental stages can be associated with corresponding behavioral patterns and

corresponding mental structures. Starting from a possible hierarchy of men-

tal structures, it is possible to match them with corresponding behavioral
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patterns observable in appropriate evaluation contexts. In this sense, tasks

unambiguously belonging to different categories of tasks requiring different

behavioral patterns will make it possible to reveal the test takers’ corre-

sponding mental structures. However, with respect to the application di-

mension of mathematical knowledge, there are problems with matching

mental processes and observable behavior. A striking example came from

Cooper (1994). The so-called Lift problem (Figure 2.3) have become an of-

ten cited example illustrating how different possible solutions to an

open-ended question can be analyzed in terms of understanding the task as a

realistic or routine task.

Fig. 2.3 The Lift problem

In Cooper’s (1994) analysis it is clear that the expected right answer (i.e.

269 ÷ 14 rounded up to the nearest whole number can be the result of very

different understandings and solution strategies. One possible way is to un-

derstand that this task signifies a real problem that has to be solved, but tak-

ing account of the test condition, students should not create new variables

and should not question some axioms implicitly involved in the task. The

other way is to understand that this task signifies a routine school mathemat-

ics problem but there is a trap in it. In this second way, one should not divide

269 by 14, because of falling to trap. However, as Cooper suggests, the first

type right solution requires some assumptions that are almost never true,

e.g. the lift is always full except for the last trip. If someone assumes that a

lift that is designed for 14 people works on average carrying about 10 per-

sons, will give a wrong answer if only she realizes that in a test one is not ex-
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pected to create new variables, but to find out the intentions and use the rules

such tasks usually require and activate.

There are some classifications of realistic (and non-realistic) mathemat-

ics word problems proposed in the literature. One relevant aspect is whether

the task classification has a mental representational and instructional focus

or whether it has a system-level assessment purpose. The first aspect is rep-

resentative of a taxonomy proposed by Galbraith and Stillman (2001). Ac-

cording to Verschaffel (2006), this categorization focuses on student think-

ing processes expected to elicit and on the relationship between word prob-

lems and the real world. In this taxonomy, there are four word problem

categories:

(1) injudicious problems, wherein realistic constraints are seriously vio-

lated;

(2) context-separable problems, wherein the context plays no real role in

the solution and can be stripped away to expose a purely mathemati-

cal question;

(3) standard application problems, where the necessary mathematics is

context-related and the situation is realistic, but where the procedure

is (still) rather standard;

(4) genuine modeling problems, in which no mathematics as such ap-

pears in the problem statement, and where the demarcation and for-

mulation of the problem, in mathematical terms, must be (at least

partly) supplied by the modeler.

This taxonomy focuses on students’ thinking (modeling) processes, i.e.

how links between their mental representations and the real-world objects

are realized.

Another categorization that can also be considered as an important ante-

cedent of the categories proposed in the forthcoming parts of this chapter,

was described by Palm (2008, 2009). Palm focuses on task characteristics of

word problems that emulate out-of-school situations. He attempts to de-

scribe what characteristics a so-called authentic task should have. The key

idea is a reference to the elements of ‘simulation’, i.e. the concordance be-

tween word problems and out-of-school, real-world task situations: compre-

hensiveness, fidelity and representativeness. These terms are borrowed

from a seminal work written by Fitzpatrick and Morrison (1971), whose

work was made of a system-level evaluation purpose.

Palm’s approach for categorizing authentic tasks yielded support from an
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analysis of Finnish and Swedish national assessment tasks. Although this

task battery was made for upper secondary school students, there are some

lessons worth considering for lower grades as well. It has been revealed that

50% of the word problems used in national assessment both described an

event that might occur out of school context and included a question that

might be ‘realistically’ posed in that event. These two superficial task char-

acteristics may strongly indicate that the word problem is authentic, and au-

thenticity – as described in other taxonomies – is associated with students’

genuine mathematical modeling processes.

Our attempt to set up a taxonomy for word problems from the aspect of

applied mathematical knowledge will necessary take account of both char-

acteristics of word problems and the mental processes that are elicited in the

word problem solving process. There will be four task categories proposed

in a way that it may be considered a two by two system. There are two cate-

gories for word problems not requiring genuine mathematical modeling of

the problem situation, and there are two categories called realistic and au-

thentic that refer to genuine mathematical modeling in the sense of the fol-

lowing description: In accordance with Galbraith and Stillman (2001), gen-

uine modeling problems are problems wherein there is at least one modeling

complexity involved that makes that the solver cannot straightforwardly

formulate, understand, mathematically represent, solve, interpret, answer

the problem in the same way as he can do for a prototype or pseudo-real

problem.

“Bare Tasks” Containing Purely Mathematical Symbols

The term “bare tasks” is borrowed from Berends and van Lieshout’s (2009)

taxonomy for word problems in relation with whether they contain drawings

as essential or irrelevant part of the task. Bare tasks contain purely mathemati-

cal symbols and at most a formal instruction about what to do or how to solve

the task (e.g., “10 + 26 = ?”). This category stands here as a sufficient and nec-

essary starting point to define what types of tasks have little to do with the ap-

plication of mathematics. Tasks containing purely mathematical symbols – or

text at most ‘solve the equation’ type instructions – do not usually have rela-

tions with students’ applied problem solving or mathematical modeling.

Please note, however, that even bare tasks are appropriate means for facilitat-
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ing mathematical modeling in a way that is called a reverse way of word prob-

lem solving, i. e. when students are taught how to pose word problems given

the mathematical structure of the task in purely symbols.

This type of tasks is usually part of everyday classroom practice, and the

capability to solve such tasks is part of the curricular objectives as well.

A possible sharp distinction between these ‘bare tasks’ and tasks of the other

three categories can be found in understanding and learning fractions

(Mack, 1990).

We do not want to give the impression that bare tasks are per se easier

than tasks embedded in a context. To the contrary, in some cases, children

will perform better on word problems than on mathematically isomorphic

bare tasks. This has been stressed and documented by several authors (Car-

penter, Moser, & Bebout, 1988; De Corte & Verschaffel, 1981).

Prototype and Pseudo-Real Word Problems

As we have discussed in a previous section, classroom instruction fre-

quently uses and relies on so-called prototype examples. These tasks are

word problems dressed on a skeleton that can be considered as a representa-

tive of a mathematical operation or other mathematizing process. Prototype

examples are often called in Hungary ‘green stove’ or ‘precept’ examples

from which one can induce and explore analogies. We define prototype ex-

amples as mathematical word problems that are used in order to learn to rec-

ognize and practice a particular mathematical operation (e.g. multiplication)

or a particular mathematical formula or solution schema (e.g. the “rule of

three”), In such problems, the content is carefully selected or constructed

because of its familiar and prototypical nature, but that content has no spe-

cial meaning or role from a realistic point of view.

Certainly, learning form worked-out prototype examples can be a powerful

tool in improving students’ mathematical abilities, but there is a potential dan-

ger in generating so-called rational errors (Ben-Zeev, 1995) in a way that in-

stead of transferring the deep structure and the solution processes adequate for

the prototype example students may rely on surface similarities. (E.g., poor

learners may categorize word problems according to their content or contextual

features like ‘age difference tasks’, ‘flag coloring tasks’ and so on even though

mathematically speaking they have little or nothing in common.)
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The understanding and solving of many word problems depends on “tacitly

agreed rules of interpretation and on multiple assumptions of prototypicality”

(Greer, 1997, p. 297.) According to Hong (1995), good problem solver sixth

grade students are able to categorize word problems in the early phase of

problem solving, i.e. already during the initial reading of the problem.

Jonassen (2003) provided an extensive review of literature about students’

(mis)categorizing word problems. The essence of these studies, as it can be

plausibly hypothesized, is that successful problem solvers categorize word

problems according to their (mathematical) structural characteristics, while

poor achievers tend to rely on surface (or situational) features (see Jonassen,

2003; Verschaffel, De Corte & Lasure, 1994). It is not mainly the content of

the task that elicits such superficial strategies, but the feedback received from

the teacher (and from other participants of the school system) about the suffi-

ciency of using such strategies. Many teachers even explicitly teach four- or

five phase strategies by which most of the word problems can be successfully

solved (e.g., gathering the relevant data, naming the necessary operation, exe-

cuting the operation, underlining the solution) Teaching such strategies is sa-

luted only if the meaningfulness (or mindfulness) and the flexibility (or

adaptivity) of these strategies can be maintained.

Realistic Word Problems

The assessment of student achievement on realistic word problems must,

however, be done more flexibly and more dynamically than in traditional

former ways (Streefland & van den Heuvel-Panhuizen, 1999).

The term ‘realistic’ is used according to the Dutch RME definition. In a

realistic problem, students are expected (and many times required) to use

their mental representations and models in order to understand and solve the

problem. Please note that the term realistic refers to mental imageries that

are the various means for appropriate problem representations. However,

activating and using mental imageries do not necessarily imply that a task is

realistic. In Cobb’s (1995) understanding, adding two two-digit numbers

will not require students to use situation-specific imageries, albeit they

probably use imageries during the addition process. Making distinction be-

tween realistic and pseudo-realistic word problems the term’ situation spe-

cific imagery can be of our help.
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How to distinguish realistic word problems from the prototype- or

pseudo-realistic ones? We agree with Hiebert et al. (1996) that no task in it-

self can be routine or problematic. A task becomes problematic to the extent

and by means of treating them problematic. Likewise, a word problem be-

comes realistic to the extent it enables students to use their mental images

based on real-world experiences. Inoue (2008) suggests helping students

validate problem solving in terms of their everyday experiences. It can be

done by incorporating fewer contextual constraints in order to let students

create a richer opportunity for imaginary construction of the problem. This

is in line with Reusser’s (1988) observation, who found the various textual

and contextual cues too helpful in anticipating the problem solving process.

For example, students too often think they are on the right way if the solu-

tion process works out evenly (e.g., a division can be executed without a re-

mainder).

In many cases, realistic word problems usually have relatively longer

texts than prototype or pseudo-realistic problems do. This is justified by

Larsen and Zandieh (2008) in the case of algebra items, where they found it

necessary to have a wordy explanation of the situation – when the item is sit-

uated in a realistic context. Consequently, the length of the problem text in

itself is not a criterion.

A general criterion of a word problem being realistic will involve the fol-

lowing criterion: In a given age-group, for the majority of students, solution
requires mental processes involving horizontal mathematization and genu-
ine modeling elements that go beyond the mere application of a previously
taught and well-learnt operation, solution scheme or method. Realistic
word problems enable student to build different mental models of a problem
situation. These models may range from mental number lines to a sketched

drawing of a rectangular.

Let us illustrate the functioning of this criterion with a task posed by

Gravemeijer (1997):

Marco asks his mother if his friend Pim may stay for dinner. His mother
agrees, but this means that there is one cheeseburger short. There are five
cheeseburgers, and including Pim there are six people now.
How would you divide five cheeseburgers between six people?

As Gravemeijer notes, in a real life situation, there can be different practical

solutions given: e.g., Marco shares his cheeseburger with his friend, father

and mother share their cheeseburger to help out or someone goes out to buy an
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extra one. Of course, in the mathematical classroom, where all theories of

tasks contexts born in the previous decades tell their own story (“feel for the

game”, sociomathematical norms, mathematical beliefs, dual educational

codes), hardly anyone will propose a solution similar to the above mentioned

three renegade answer except for those who do not feel themselves competent

enough in division-like tasks. We may hypothesize that more first and second

grade children will give renegade, contextual answers taken account of the sit-

uation variables than older children would. As for an upper estimation, hope-

fully the majority of seventh and eighth grade students is able to compute 5/6

as a result of a division called forth by the text of the problem, and without

mobilizing situation-dependent imageries. Consequently, this ‘Cheeseburger

item’ might serve as a realistic task in grades 3 to 6, requiring students to acti-

vate situation-dependent imageries, and find an appropriate mathematical

model for the solution. Furthermore, for older children, the task may appear as

a prototypical word problem, since they are able to divide 5 by 6, whatever

concrete objects are mentioned in the problem statement.

There are useful considerations proposed in the literature about how a

word problem may become realistic. According to Boaler (1994), students

often do not see the connections between mathematical situations presented

in different contexts, and this is because of the (pseudo-real) contexts used

in mathematical classroom. She suggests careful selection and construction

of word problems in order to develop transferable knowledge from the

classroom the ‘real world’. Mere replication of real life situations in word

problems is not appropriate. To clarify the difference between word prob-

lems that facilitate students’ knowledge transfer from their real world expe-

riences, the following example may be helpful.

De Lange (1993, p. 151.) cited an example from the Illinois State test:

Kathy has bought 40 c1 worth of nuts. June has bought 8 ounces2 of
nuts. Which girl bought the most nuts?

a June
b They both bought the same amount
c Kathy bought twice as much
d Kathy bought one ounce more
e You can’t know
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According to de Lange, the attempt is „admirable”, since solving this

problem requires the student to make an appropriate mental model for the

situation, and any attempt to use a general strategy like „search for the data,

choose the right operation, and execute the computation” would fail. The

expected right solution here is “you can’t know”, since the numerical data

will not imply any straightforward computational answer. However, de

Lange suggests to further improve the task in a way that all options might be

true, and it is the students who have to create different task conditions in

which the options become true. Furthermore, it follows that the task format

in itself can make a problems situation realistic: often it is the

open-endedness of a task that makes a given word problem realistic.

In Treffers’ example (1993) the use of newspaper excerpts revealed how

children can try to solve without bias a mathematical word problem. Fourth

grade children receiving the text saying that “On average I work 220 hours

per week” was questioned whether it was possible to work 220 hours per

week. Children not immediately mathematized the problem, and give an-

swers of various types. One important aspect of realistic mathematics tasks

is to encourage diversity by means of open-endedness.

Contrary to previous assumptions, as Inoue (2008) warns, the benefit of

use of familiar situations is limited. What is more, the familiarity of the con-

text seems to be correlated with both the content area within mathematics

and with the required level of thinking processes (Sáenz, 2009). For exam-

ple, open-endedness in question format is more frequently related to higher

level thinking skills. – Hence the three dimensions of the mathematical ob-

jectives (disciplinary content, applied mathematical knowledge, mathemati-

cal thinking abilities) are intertwined, enabling us to consider the applica-

tion dimension as albeit relatively distinct, but embedded in different cate-

gory values of the other evaluation dimensions.

Authentic Word Problems

A fourth type of word problems is labeled as authentic. Although it should

be clear that the terms realistic and authentic are closely related, we feel the

need to use the term authentic word problems to give a specific qualification

to a particular subset of realistic word problems. The term ‘authentic’ has

been used in various contexts in the mathematics problems solving litera-
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ture. Accepting Palm’s definition, authenticity has several degrees, and it

expresses a relation between school tasks and real life situations. When “a

school task …well emulates a real life task situation” (Palm, 2008, p. 40)

that task may be called an authentic one. On the other way, Kramarski,

Mevarech and Arami (2002) approached authenticity from a problem solv-

ing perspective. They call a mathematical task authentic if the solution

method is not known in advance or there are no ready-made algorithms.

A third proposal for a definition comes from Garcia, Sanchez and Escudero

(2007) who speak about authentic activities, i.e. the process of relating a

task and a real situation.

In itself no task can be considered either authentic or non-authentic (simi-

larly to the lack of distinction in case of the realistic versus non-realistic di-

chotomy), so when aiming at providing useful categories for an evaluation

framework, these three definitions are not equally applicable. As for the first

definition, emulating a real life task situation may refer to two things when

making decisions about the level of authenticity. First, the degree of emula-

tion may depend on a textual elaboration or creating an appropriate task con-

text (e.g. playing the situation). Secondly, there can be remarkable differ-

ences among students in that to what extent a situation can be of familiar

(therefore real life) nature. The second definition has even more obviously

addressed inter-individual differences (i.e. a solution method is not known

for whom?). The third approach is closer to the RME interpretation of hori-

zontal mathematization. In sum, from educational evaluation purposes, we

suggest using Palm’s definition with emphasis on the need for extensive

verbal elaboration in order to “emulate” real life situations.

From an educational evaluation aspect, characteristics of and require-

ment for authentic tasks can be summarized along two lines. First, authen-

ticity should usually require an alienation from the traditional individual

paper and pencil methodology towards more authentic settings such as

group working on tasks consisting of various sources of information. Sec-

ond, authentic tasks in traditional paper and pencil format will be lengthier

in text, since descriptions of intransparent problem spaces will result in

longer sentences providing cues for missing information and providing

also redundant details emulating real life situations in that way. Further-

more, many authentic task will contain photos, tables, graphs, cartoons

etc. What is more, authenticity refers to a kind of task-solving behavior

and student activity.
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It is worth bearing in mind that reaching authenticity as reflection or emu-

lation of real world events and situations is rather a utopia, since the context

of schooling and the context of the real world are fundamentally different

(Depaepe, De Corte & Verschaffel, 2009). The so-called realistic and au-

thentic tasks do not always measure mathematical knowledge and its rela-

tions to real life situations, but they measure the ‘feel for the game’ as ana-

lyzed in the “Sociomathematical norms…” section. Although the ‘feel for

the game’ is a valuable aspect of one’s achievement, the possibility of to-

tally different mental representations resulting in the same (right) answer to

a task intended to measure the application of mathematical knowledge in an

everyday context, urged Cooper (1994) to warn politicians and researchers

in a way that

Mathematics Education “the English experience [in evaluating math-
ematical knowledge in everyday context] so far suggest that both much
longer times scales to allow for the lessons of research and experience
play a greater role, and less political interference in the development
of tests, will be needed” (p. 163.)

As Hiebert et al. (1996, p. 10) suggested, “problematizing depends

more on the student and the culture of the classroom than on the task.”

A problem that can be a routine task in one classroom can be problematic

and require ‘reflective inquiry’ while „given a different culture, even

large-scale real-life situations can be drained of their problematic possi-

bilities. Tasks are inherently neither problematic nor routine. (p. 10. –

italicized by us).

In sum, authentic tasks usually have the following characteristics:

(1) detailed (often lengthy) description of a problem situation emulating

real world events

(2) the solution requires genuine mathematical modeling of the situation

(3) the solution process often requires so-called ‘authentic activity’, e.g.

gathering further data by means of various methods (measuring, esti-

mating, discussing prior knowledge about a topic)

(4) in many cases students are encouraged to pose problems and ask

questions based on both the given word problem and on their

real-world experiences.
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Summary

Even though bare arithmetic tasks and prototypical word problems still de-

serve a place in elementary school mathematics teaching and assessment,

they need to be complemented more than was the case hitherto with other,

more realistic and more authentic types of tasks, which have recently shown

to be more promising vehicles for realizing the “application function” of

word problems, i.e. to offer practice for the quantitative situations of every-

day life in which mathematics learners will need what they have learned in

their mathematics lessons.

By their very nature, those realistic and authentic problems have a greater

potential of providing learning experiences wherein learners are stimulated

to jointly use their mathematical knowledge and their knowledge from other

curricular domains such as (social) sciences and from the real world, to

build meaningful situational and mathematical models and come to senseful

solutions. At the same time, these more authentic and realistic problems

yield – because of their essentially non-routine, challenging and open na-

ture, ample opportunities for the development of problem solving strategies

(heuristics) and metacognitive skills that may – if accompanied with appro-

priate instructional interventions aimed at decontextualisation and generali-

sation – transfer to other curricular and out-of-school domains. And they in-

volve many possibilities to contribute at the deconstruction of several inap-

propriate beliefs about and attitudes towards mathematics and its relation to

the real world.

An important but difficult issue for assessment is how to make it clear to

the learners what is expected – in terms of the required level of realism and

precision – from them in a concrete assessment setting. In principle, the

question about the mathematical model’s degree of abstraction and preci-

sion should be regarded as a part of what we want students to learn to make

deliberate judgments about, as one crucial aspect of a disposition towards

realistic mathematical modelling and applied problem solving.

Within the context of a regular mathematics class, wherein discussion

and collaboration is allowed and even stimulated, the degree of precision,

the reasonableness of plausible assumptions, and so on, may be negotiated

(Verschaffel, 2002). But such unclarities and difficulties with respect to the

level of realism and precision are more serious, we believe, when problems

are presented in a context that precludes discussion, especially an individual
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written test, as has been shown above when discussing the work of Cooper,

1994; Cooper & Dunne, 1998). So, if we want to include more realistic and

authentic problems in our assessments, as pleaded above, we will also need

to pay attention at how we will make it clear to the learner – explicitly or im-

plicitly – what “the rules of the game” are for a given assessment problem.
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