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Introduction 

The propagation of intense laser pulses in ionizing media is important in a wide range of fields, 

including laser-driven accelerators [1], laser-plasma channeling [2], harmonic generation [3], 

supercontinuum generation [4], X-ray lasers, and laser-fusion schemes (see [1] for a review). 

An intense laser pulse propagating in a neutral gas is affected by diffraction, refraction, and 

nonlinear effects like self-focusing or self-phase modulation (SPM), ionization, and plasma 

defocusing [5-7]. As the beam focuses, the increased intensity results in ionization of the 

medium and plasma formation, hence both linear and nonlinear effects of propagation will be 

altered. The propagation of the bullet of light in an ionizing medium proved to be a highly non-

homogeneous process both in time and in space. In time the leading part of the pulse will 

propagate in a neutral gas, being affected only by diffraction and neutral dispersion. As intensity 

increases in the pulse, the following part will be suffering from nonlinear effects (like SPM) 

governed by the nonlinear refractive index (n2) of neutrals. Furthermore, for the high power laser 

pulses ionization starts already on the leading edge of the pulse, and following parts of the pulse 

will  propagate through ionized medium, ionization rate depending strongly on time, so both 

linear and nonlinear parameters of the medium will become time-dependent. The trailing edge of 



the pulse will be influenced by effects of the ionized medium, in certain cases defocusing in 

some cases refocusing is observed. The degree of the above modifications will be varying in 

radial direction which will produce complex time-space coupling during pulse propagation. 

When an ultrashort, intense laser pulse is used in particle acceleration experiments spatial and 

energy distributions of energetic electrons are shown [8,9] to depend strongly on the contrast 

ratio and shape of the laser prepulse. However this implies that it is essential to estimate the 

modifications of the shape of the pulse as induced during propagation. Moreover, the distortions 

induced in the temporal and spatial pedestal of an ultraintense pulse are important in these 

experiments and should be quantified both for characterizing the pulse and for estimating the 

electron concentration map to be used further in PIC simulations [10]. 

An active field where the propagation of an intense pulse plays an essential role is generation of 

high order harmonics and attosecond pulses, either single or in trains. High harmonic generation 

is a very perspective method for transforming the properties of infrared laser pulses to the XUV 

or soft-X-ray regime, thus providing unique ultrashort coherent pulses with high photon energies. 

Unfortunately, the conversion efficiency on the single atom level is rather weak, so harmonic 

radiation from many atoms has to be added constructively in order to achieve the flux level 

necessary in pump-probe experiments. The rapidly increasing laser pulse powers give promise to 

the generation of HHG in increasing magnitude, if macroscopic conditions can be chosen 

suitably. One option for scaling up HHG is a geometrical enlargement [11,126], keeping the 

system in the low ionization regime. With the peak powers promised to become available in the 

new laser facilities (ELI, CALA, EXCELS) this method will soon become unpractical due to the 

required focusing of tens-to-hundred meters. An alternative method for utilizing these high 

power laser pulses is in highly ionized arrangements, where phase matching is achieved in a high 



density, short gas target. The two alternatives require different focusing arrangements and 

different gas targets, and direct experimental comparison is not available in any of the existing 

laboratories, let alone in the new infrastructures under development. Thus a 

theoretical/simulation experiment is our only means to compare the properties of the high 

harmonic radiation produced in the low ionization or in the high ionization arrangement.  

Recently efficient soft x-ray high-harmonic generation in multiply ionized plasmas [13] was 

reported. Using intense UV driving lasers at 270 nm, emission in the soft x-ray domain was 

obtained and is assumed to be generated by ions, from Ar
+
 to Ar

5+
 ions. The authors emphasize 

the necessity to model pulse propagation in these media of multiple ionized atoms as well as to 

model harmonic generation in these conditions. 

In this paper we use a three dimensional non-adiabatic model to characterize ultrashort pulse 

propagation in a gas medium under conditions of high intensities which creates high electron 

concentrations via multiple ionizations of the target atom.  Although non-sequential multiple 

ionization is reported to occur [14] in noble gases, the dominant mechanism is sequential 

ionization so to calculate electron concentration we adopt a scheme that relies on rates of 

successive single-electron ionization events [15]. Models for pulse propagation in gas or 

condensed media are reviewed in [16] including numerical modeling of ultrashort pulse 

propagation in extreme nonlinear regimes. 

 

Model 

Propagation of an ultrashort pulse in an ionizing gas medium can be described in cylindrical 

coordinates by the equation [17]: 
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Where c is the speed of light, E1 is the full electric field (carrier) with central frequency , and 

the effective refractive index is written as 
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and accounts for the dispersion by neutrals and electron plasma (first and respectively last term 

of Eq. 2) as well as for the nonlinear refractive index associated with the bound electrons (second 

term in Eq. 2). The last term of Eq. 2 contains the square of the plasma frequency p which is 

proportional to the electron concentration ne.  

To solve Eq.1 it is advantageous to write it in a moving coordinate frame (𝑧′ = 𝑧 and 𝑡′ = 𝑡 −

𝑧/𝑐). In the following we drop the prime symbol for simplicity, so the equation becomes: 
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The time derivative can be eliminated by applying the Fourier transform. Also expanding the 

Laplace operator the equation becomes:
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where 𝐹̂ denotes the Fourier transform operator. In paraxial approximation the second derivative 

wrt z is neglected; therefore, the final equation to be solved numerically is: 
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To solve Eq.5 numerically we use a Crank-Nicolson method written for a nonlinear scale in 

radial direction. The Crank-Nicolson method ensures sufficient accuracy in dealing with finite 

differences while the nonlinear scale allows a sufficiently large integration domain in order to 

avoid unphysical reflections of the propagated field on the domain walls. The right-hand side in 



Eq. 5 has both an explicit dependence of the solution and an implicit one through the plasma 

term and Kerr term. For this reason we followed an iterative self-consistent procedure at each 

step of integration, as follows: after integrating over a dz step we obtain the propagated field E1 

in frequency domain then we use the inverse FT to obtain E1 in time domain and recalculate the 

free term in Eq. 5. We then repeat the integration in frequency domain with the new source term 

and proceed like this until the difference between two successive laser fields is below a given 

threshold. Usually three to five iterations are enough, but this depends on many parameters like 

the number of steps in z direction, the initial gas pressure, initial intensity, etc. 

The imaginary part of the refractive index was also considered in order to estimate the damping 

of the wave during propagation. We assume that the energy lost by the pulse is solely due to 

having to supply energy for ionization. To find this contribution we extended to multiple 

ionization case the method described in [18] for single ionization. In short we write the energy 

balance for the ionization process and assume that the energy lost by the pulse between z and 

z+dz is the opposite of the energy gained by the electrons in the same interval. The energy loss 

was estimated for each (r,z) point after every successful integration step, and the dumped field 

was used in the next integration step. 

To integrate Eq. 5 in realistic conditions an essential ingredient is the ionization model used to 

calculate the ionization rates. One possible way to proceed for molecules and atoms, also 

adopted for the present results, is to use the Ammosov-Delone-Krainov (ADK) [19] model or its 

molecular version [20]. 

As one can see from Eq. 2 we need to estimate the electron concentration in the medium, which, 

in a low intensity field (10
14

 W/cm
2
), originates from single (usually multiphoton or tunnel) 

ionization of atoms/molecules. In a very intense laser field an atom/molecule experience multiple 



stripping of electrons, starting from the outer shell ones. To calculate the electron concentration 

we considered only sequential ionizations and developed a system of rate equations which allows 

the calculation of fractions of ionic species assuming the following known quantities: n0 – initial 

density of the medium, w01(t), w12(t), … - ionization rates; index pairs (k-1)k mean ionization rate 

from the (k-1)-times ionized species to k-times ionized ones; rates were calculated using the 

ADK [19] approximation. The unknowns are n0(t), n1(t), .., nk(t) – fraction of neutrals, singly 

ionized, …, k-times ionized species.  

The following system of differential equation was written and solved: 

𝑑𝑛0(𝑡)

𝑑𝑡
= −𝑛0(𝑡) ∙ 𝑤01(𝑡) 

 

𝑑𝑛1(𝑡)

𝑑𝑡
=    𝑛0(𝑡) ∙ 𝑤01(𝑡) − 𝑛1(𝑡) ∙ 𝑤12(𝑡) 

⋮ 

𝑑𝑛𝑍(𝑡)

𝑑𝑡
=    𝑛𝑍−1(𝑡) ∙ 𝑤(𝑍−1)𝑍(𝑡)  
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Fig.1 Temporal evolution of the ionized species starting from neutral Ne, for a peak intensity of 1.8×10
16

 

W/cm
2
. One can see that even Ne

4+
 still ionize and different species appears in different time ranges 

within the pulse. 

 

In order to correctly evaluate the variation of the effective refractive index due to the plasma 

contribution, we calculate the total number of electrons resulting from this consecutive stripping 

of an atom/molecule: 

𝑛𝑒(𝑡) = ∑ 𝑘 ∙ 𝑛𝑘(𝑡)

𝑍

𝑘=1

 

One brief mention should be done for the optical Kerr term in Eq. 2. As multiple ionized species 

are present one have to account for their contribution to the third order susceptibility 𝜒3 of the 

medium. The values of the susceptibilities for ionized atoms are not known but can be estimated. 

Here we used the relationship that can be established [21] between the susceptibility of the ion 

𝜒3
+ and the susceptibility of the neutral atom 𝜒3

0 , their ratio being in connection with the ratio of 

their ionization potentials as 𝜒3
+ 𝜒3

0 ≈⁄  (𝐼𝑝
0 𝐼𝑝

+⁄ )
3
, where Ip stands for the ionization potentials of 

the species involved. 

Results and discussion 

In the following we will focus our discussion on the case of an 800 nm femtosecond pulse 

propagation in Ne at 85 torr, assumed constant along a 5 mm long static cell placed in the focus. 

Other parameters of the calculation are as follows: pulse energy 40 mJ, pulse duration 26 fs, 

focal length 4 m, beam waist at the focusing element 15 mm, and we first assume an undistorted 

temporal pulse shape. With these conditions the waist in the focus is 68 m and the initial 

intensity at medium entrance reaches the value of 1.8×10
16

 W/cm
2
.  Fig. 1 plots the evolution in 

time of ionizing species Ne, Ne
+
, Ne

2+
 and Ne

3+
. We see that Ne, and  Ne

+
 are fully depleted by 



the end of the pulse, while Ne
3+

 and Ne
4+

 share the initial population between them. It is clear 

that for higher intensities one will have to consider higher and higher ionized species. If initial 

Ne density is assumed to be n0 then the final electron concentration will be > 3n0. This is seen 

in Fig. 2 where the electron concentration and laser envelope are plotted against time. As one can 

note the electron concentration exhibit three plateaus, one around -6T0 (corresponding to double 

ionization), a second around -4T0 (corresponding to triple ionization) and a third one after peak 

maximum, related to the time evolution of the ionizing species, as seen in Fig. 1. This temporal 

variation of the electron concentration is highly non-homogeneous in space thus one can foresee 

a complex spatio-temporal variation of the refractive index which will cause interesting effects 

during propagation as we will see in the following. 
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Fig. 2 Intensity envelope and electron concentration as a function of time. The time evolution of 

the electron concentration is connected to the evolution of the ionizing species (cf. Fig.1.). 

 

Plotted in Fig. 3 is the spatial map of the peak intensity of the laser pulse, propagating in the 

ionized Ne medium, in the grid points of the interaction region. Two main features are worth to 



be emphasized: the first one is the strong defocusing of the field during propagation, as electron 

distribution along radial direction act as a diverging lens across the beam. The second one is the 

pulse refocusing on axis, after ~1.5 mm of propagation. Analysis of the field in detail shows that 

this is due to the refractive index variation in time. In the leading part of the pulse the variation is 

given mainly by the electron density variation, however, when electron density comes to a 

stationary value the main variation of the refractive index is given by the Kerr term. This acts as 

a converging lens and induces a focusing of the pulse in the trailing edge, after the pulse center. 

One can also observe that in the peripheral regions (r>250 microns) and after z=4 mm of 

propagation we could not avoid a numerical boundary reflections on the domain walls, but they 

are weak and do not influence the values of the field in the central part. Probably for longer 

propagation distances these reflections become important and should be accounted for and 

eliminated. 
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Fig. 3 Spatial map of the pulse peak intensity, in units of 10
14

 W/cm
2
. An effect of boundary reflection 

can be seen around z=4.5 mm and r>250 microns. 

 



It is also interesting to analyze the electron concentration in the integration domain, seen in Fig. 

4. One can see the level of ionization which indicates that even Ne
3+

 is ionized. Also, the 

plateaus which are seen in time in Fig. 2 are present also here in space, which is another 

indication that there is a strong space-time coupling during pulse propagation in high ionizing 

conditions.  

The spectral/temporal distortions which the pulse suffers during propagation in the ionizing 

medium will be inherited in all interactions of the laser field with matter. It is therefore essential 

to characterize these distortions in temporal, spectral and spatial domains, as they could be 

important even at optical cycle level.  
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Fig. 4 Electron fraction map in units of initial neutral concentration. 
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Fig. 5 Laser pulse on-axis both at medium entrance (red) and at medium exit (black) 

The model we use allows this characterization because the result of the calculation is the full 

electric field E1(r,z,t) or its spectral counterpart E1(r,z,). We show in Fig. 5 the field in time, 

on-axis, both at medium entrance and medium exit. As we see, the pulse experienced heavy 

changes in both amplitude (due to plasma defocusing) and phase (due to the time variation of the 

refractive index). An exception is the pulse leading part which did not produce ionization and is 

only slightly changed by dispersion of neutrals.  
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Fig. 6 Pulse spectrum at medium entrance (red) and exit (black) 

 

Strong modifications can be seen also in frequency domain, as shown in Fig. 6. Initial spectrum 

is a Gaussian centered at 800 nm, while the spectrum at medium exit on-axis is heavily 

broadened, both towards longer but especially toward shorter wavelengths. This broadening is 

the effect of plasma induced self-phase modulation, similar to Kerr induced self-phase 

modulation. The range of broadening is noticeable, from an initial bandwidth of 50 nm centered 

around 800 nm (transform limited pulse), the pulse extends in a spectral domain from 470 to 950 

nm after propagation. 

In the case of high order harmonics generation the temporal variations of the optical parameters 

of the medium gives rise to macroscopic phase-matching effects that can, among others, limit the 

time window of effective high harmonic generation [22]. 

In the high intensity regime present at the first part of the gas medium, high-order harmonics can 

be generated both from neutrals (at the leading edge of the pulse) and from ions (after neutrals 

are ionized). However, in our case the high electron density prevents phase-matching of 

harmonics generated from ions. In fact, in this regime the main contribution to phase-mismatch 

comes from the plasma refractive index. However, the high-intensity regime can be explored by 

using UV generating fields, in which case the plasma dispersion is significantly decreased and 

the linear and non-linear refractive indices of ions are much larger, and cannot be neglected 

anymore, as was recently demonstrated in [13].  

With near-infrared generating fields, phase-matched harmonic generation is mainly restricted to 

moderate ionization rates. The strong spatial and temporal distortions of the generating field can 

create conditions of efficient harmonic generation after a significant propagations length, i.e. 

after which the nonlinear effects diffracted the laser beam to a wider area in the gas cell, and a 



homogenous intensity-distribution is achieved. This effect can be nicely seen in Fig. 7 where the 

map of the peak intensity over the interaction region is plotted. After propagating for about 3 mm 

the field stabilizes to a configuration with a constant intensity and phase over a large region in 

radial direction. It is interesting to note that stabilization starts from peripheral regions towards 

on-axis. 
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Fig. 7 Spatial map of the pulse peak intensity, in units of 10
14

 W/cm
2
. After an initial strong variation in 

both radial and axial directions the field stabilizes over a large interaction region, favourable for harmonic 

generation. 

 

The space-time coupling can also generate field configurations which give rise to unique effects 

in the interaction between light and matter. One example is the generation of single attosecond 

pulses in a lighthouse configuration, which was reported in [23]. In this case it was demonstrated 

numerically that a multicycle laser pulse (800 nm, 25 fs) gains, in conditions of high ionizations, 

a rotating wavefront which, generating high order harmonics in interaction with Ar atoms, 



produce single attosecond pulses in successive half-cycles and with increasing divergence. The 

overall effect is a series of single attosecond pulses emitted in conical shapes of increasing 

angles, from one half-cycle to the next half-cycle. 

Conclusions 

Solving the case of an ultra-intense pulse propagating in gaseous media is performed via a non-

adiabatic three dimensional model which was extended to the case of multi-ionization for the 

atomic species present in the interaction region. The results demonstrate a complex space-time 

coupling during pulse propagation and strong temporal/spectral modifications of the pulse. The 

field configuration can, in specific conditions, generate interesting effects, attosecond lighthouse 

emission being demonstrated for the case of Ar.   
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