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ABSTRACT 

 

Nitric oxide (NO) and related molecules (reactive nitrogen species) regulate diverse 

physiological processes mainly through posttranslational modifications such as protein tyrosine 

nitration (PTN). PTN is a covalent and specific modification of tyrosine (Tyr) residues resulting 

in altered protein structure and function. In the last decade, great efforts have been made to 

reveal candidate proteins, target Tyr residues and functional consequences of nitration in plants. 

This review intends to evaluate the accumulated knowledge about the biochemical mechanism, 

the structural and functional consequences and the selectivity of plants’ protein nitration and also 

about the decomposition or conversion of nitrated proteins. At the same time, this review 

emphasizes yet unanswered or uncertain questions such as the reversibility/irreversibility of 

tyrosine nitration, the involvement of proteasomes in the removal of nitrated proteins or the 

effect of nitration on Tyr phosphorylation. The different NO producing systems of algae and 

higher plants raise the possibility of diversely regulated protein nitration. Therefore studying 

PTN from an evolutionary point of view would enrich our present understanding with novel 

aspects. Plant proteomic research can be promoted by the application of computational 

prediction tools such as GPS-YNO2 and iNitro-Tyr software. Using the reference Arabidopsis 

proteome, Authors performed in silico analysis of tyrosine nitration in order to characterize plant 

tyrosine nitroproteome. Nevertheless, based on the common results of the present prediction and 

previous experiments the most likely nitrated proteins were selected thus recommending 

candidates for detailed future research. 

 

 

Keywords: Arabidopsis; computational prediction; GPS-YNO2; iNitro-Tyr; plant; tyrosine 

nitration 
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1. Biochemical mechanism of protein tyrosine nitration 

In general, attach of a nitro group (-NO2) to a chemical compound through a chemical 

reaction is known as nitration. In biological systems, fatty acids, nucleic acids and proteins can 

be targets of such modifications. Despite the fact that in proteins several amino acids such as 

tyrosine, tryptophan, cysteine and methionine can be affected by nitration, tyrosine nitration got 

particular attention in both animals and plants partly because besides nitro-tyrosine, the 

formation of phospho-, chloro-, sulfatyrosine is also feasible (Feeney and Schöneich 2012).  

After the discovery of phosphorylation, in 1992, Ischiropoulos and co-workers first 

demonstrated the in vivo occurrence of protein tyrosine nitration (PTN). Interestingly, as 

opposed to tyrosine phosphorylation, nitration does not involve enzymatic activity. Regarding 

the biochemical mechanism, the covalent addition of a nitro group in the ortho position of the 

aromatic ring in tyrosine (Tyr) molecule happens in two steps. The initial step is the formation of 

tyrosil radical (Tyr
.
) during the one-electron oxidation of the aromatic ring. The main Tyr 

oxidants are hydroxyl (OH
.
) and carbonate (CO3

.-
) radicals derived from peroxynitrite through at 

least three pathways (Fig 1): (1) at suitable pH unstable peroxynitrous acid (ONOOH) is formed 

by protonation of peroxynitrite, which homolyzes to OH
.
 and 

.
NO2; (2) at physiological carbon 

dioxide concentration (1.3 mM) in aqueous environment peroxynitrite reacts with CO2 

generating nitroso-peroxocarboxylate (ONOOCO2
-) which decomposes to carbonate radical and 

nitrogen dioxide radical (
.
NO2); and (3) NO can be oxidized to nitrite (NO2

-
) which together with 

hydrogen peroxide (H2O2) can be metabolized by peroxidases to generate OH
.
 and 

.
NO2. The 

oxidation is followed by a radical-radical nitration reaction in which the nitrogen dioxide radical 

is added to the Tyr
.
 and 3-nitrotyrosine (YNO2) is being formed (Souza et al. 2008). All the 

direct in vivo oxidants (mainly carbonate and hydroxyl radicals) and nitrating agents (
.
NO2) 

derive from peroxynitrite (ONOO
-
), which itself is only an indirect contributor to PTN (Yeo et 

al. 2015; Radi 2013). Peroxynitrite is formed in the fast reaction between superoxide anion (O2
.-
) 

and nitric oxide (NO
.
); therefore, peroxynitrite derives from NO and consequently it belongs to 

the group of NO-originated molecules, the reactive nitrogen species (RNS, Patel et al. 1999). 

Figure 1 summarizes the chemical reactions leading to the formation of 3-nitrotyrosine. 

Superoxide radical anion (O2
.-
) has a remarkably shorter biological half-life compared 

to NO (Table 1, Vranova et al. 2002) and because of its negative charge at physiological pH; its 
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diffusion across membranes depends on the presence of anion channels (Denicola et al. 1998). 

The different diffusion properties of O2
.-
 and NO suggest that in biological systems, the non-

radical anion, peroxynitrite generates close to the sites of O2
.-
formation where NO produced at 

distant cellular spaces arrives (Denicola et al. 1998). Peroxynitrite itself shows longer half-life 

compared to the other discussed ROS (Siegel et al. 2015, Table 1), but it is more reactive than 

NO. Regarding the diffusion distance of peroxynitrite, it is similar to that of H2O2 and O2
.-
, but it 

is shorter compared to NO (Denicola et al. 1998). The direct nitrant, 
.
NO2

 
radical has a relatively 

short half-life and diffusion capability compared to the other reactive nitrogen species (Ford et 

al. 2002).  

2. Fate of nitrated proteins 

In order to influence signal transduction independently from phosphorylation routes, 

tyrosine nitration has to be reversible. This thermodynamically stable modification has earlier 

been considered to be irreversible but later reductant-dependent and reductant- independent 

denitrase mechanisms were described in animals (Kuo et al. 1999). Recently, denitrase activity 

has been characterized in animals (Deeb et al. 2013) and non-enzymatic denitration has also been 

revealed in case of 8-Nitro-cGMP (Akaike et al. 2010). In plants, denitrase enzyme has not been 

identified so far, thus the reversibility of tyrosine nitration remained uncertain. The reduction of 

the nitro group to amino group resulting 3-aminotyrosine is also conceivable and such reactions 

may involve nitroreductase activity. Although, bacterial or mammalian nitroreductases proved to 

be incapable of reducing nitro-tyrosine (Lightfoot et al. 2000). Formation and accumulation of 

proteasome-resistant protein aggregates can also be conceivable (Hyun et al. 2003). Nitration 

enhances the susceptibility of the protein for degradation by the proteasome implicating that 

proteasome functioning is critical for the removal of nitrated proteins (Souza et al. 2000). In 

plants, it was speculated that nitrated proteins of the roots may be more willing to degrade in 20S 

proteasomes (Tanou et al. 2012). Castillo et al. (2015) provided recent experimental evidence 

regarding the role of proteasomes in the degradation of nitrated proteins. In their work, nitrated 

abscisic acid receptor PYR/PYL/RCAR was polyubiquitylated and consequently it underwent 

proteasome-regulated degradation.  
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3. Consequences of tyrosine nitration 
 

Regarding the functional consequences (Fig 2) of PTN, it leads to the decrease of pKa 

of the hydroxyl moiety in the tyrosine residue (from 10-10.3 to 7.2-7.5, Creighton 1993). 

Furthermore, nitration of tyrosine enhances the hydrophobicity of the residue and consequently 

induces structural changes (Souza et al. 2008). A further spatial consequence of PTN originates 

from the fact that nitrotyrosine is more spacious than tyrosine, which can lead to steric 

restrictions (Savvides et al. 2002). In plant cells, the available data show that PTN usually causes 

functional loss of the particular enzyme protein (see Table 2); however the in vitro activity of 

pea glutathione reductase was not affected by this modification (Begara-Morales et al. 2015). In 

animal systems, PTN-triggered activation, inactivation or no change of activity has been 

evidenced (Yeo et al. 2015). At the same time, the presence of nitrated tyrosine(s) in a protein is 

not necessarily the cause of the functional loss, because all biological nitrating agents are also 

able to exert oxidative effects on amino acids like cysteine or methionine (Alvarez and Radi 

2003). 

Another consequence of PTN is the positive or negative impact on tyrosine 

phosphorylation (Fig 2), influencing cell signalling as it was observed in non-plant systems 

(Gow et al. 1996; Kong et al. 1996; Brito et al. 1999; Aburima et al. 2010). In plants, there is no 

convincing evidence regarding the relationship between tyrosine phosphorylation and nitration. 

However, recent bioinformatic studies revelaed the presence of tyrosine-specific kinases in the 

Arabidopsis proteome (Carpi et al. 2002), their existence is still controversial (Kovaleva et al. 

2013). Both the alteration of tyrosine phosphorylation and nitration causes disturbances in 

microtubule organization and root hair morphology (Sheremet et al. 2012, Blume et al. 2008) 

indicating a link between tyrosine phosphorylation and nitration of α-tubulin. It is possible that 

nitration competes with phosphorylation of α-tubulin for the binding sites (Blume et al. 2008, 

2013). Another indirect evidence for the interplay between the two covalent Tyr modifications 

has been provided by Galetskiy et al. (2011) who revealed that conversely regulated protein 

phosphorylation and nitration levels control the stability of photosynthetic complexes under high 

light condition.  
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4. Specificity and selectivity of tyrosine nitration 

 

Interestingly, only 1-2% of the total tyrosine pool may be the target of in vivo nitration 

(Bartesaghi et al. 2007), suggesting the highly selective nature of the process. This is supported 

by the low number of YNO2 sites in plant enzymes containing several tyrosine amino acids (e.g. 

methionine synthase or monodehydroascorbate reductase, Lozano-Juste et al. 2011 and Begara-

Morales et al. 2015, respectively). This also means that the overall yield of nitration (millimole 

of 3-nitrotyrosine/mole tyrosine) is low, what is more in sunflower grown under physiological 

conditions, nitration yield proved to be in the order of µmol 3-nitro-tyrosine/mol tyrosine (Chaki 

et al. 2009). This raises questions regarding the biological relevance of PTN (Souza et al. 2008). 

Is tyrosine nitration only an inevitable consequence of stress or it actively regulates protein pool 

size?  

The question is partly answered by the fact that in the proteome of healthy, unstressed 

plants, a certain degree of nitration can be detected, meaning that they have physiological 

nitroproteome. Presumably, this is an inactivated part of the whole protein pool and has 

significance in the regulation of its size. Physiological nitroproteomes were published in the 

organs of several plant species such as Brassica juncea, Brassica napus, Pisum sativum, Lotus 

japonicus, Citrus aurantium, Capsicum annum (Feigl et al. 2015, 2016; Lehotai et al. 2016; 

Corpas et al. 2009; Signorelli et al. 2013; Tanou et al. 2012, Chaki et al. 2015); although, the 

nitroproteins were identified only in some of these works. In a large-scale study, Lozano-Juste et 

al. (2011) identified 127 nitroproteins in wild-type Arabidopsis thaliana grown under normal 

conditions. Additionally, 21 proteins were found to be nitrated in sunflower hypocotyls (Chaki et 

al. 2009), 26 nitrated proteins were evidenced in the roots of non-stressed Citrus plants (Tanou et 

al. 2012) and 16 candidates were determined in senescent pea root (Begara-Morales et al. 

2013a).  

Protein tyrosine nitration is associated also with processes of growth and development 

such as ripening (Chaki et al. 2015), senescence (Begara-Morales et al. 2013a), cell growth and 

division (Jovanović et al. 2012). Recently, apoplastic proteins like peroxidases, enolase, 

extracellular glycoproteins were shown to be susceptible for nitration during control 

circumstances and under osmotic stress as well (Szuba et al. 2015). Krasuska et al. (2016) 

detected and identified tyrosine nitrated proteins such as legumin A-like proteins and poly ADP-

ribose polymerases in apple embryos. During the normal metabolism of root nodules, 

leghemoglobin suffers nitration which decreases during senescence (Sainz et al. 2016). 
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According to Castillo et al. (2015) PYR/PYL/RCAR ABA receptors are inactivated by tyrosine 

nitration leading to the NO-induced decrease of ABA sensitivity during germination.   

Furthermore, stress-induced intensification of tyrosine nitration has been widely 

proven in different plant species (reviewed by Corpas et al. 2013). E.g. tyrosine nitration was 

recently found to be intensified by leaf wounding in pumpkin (Gaupels et al. 2016), by salt stress 

in sunflower seedlings (David et al. 2016), by cadmium exposure in soybean root (Gzyl et al. 

2016) by selenite in pea (Lehotai et al. 2016) or by zinc treatment in Brassica species (Feigl et 

al. 2015, 2016). These recent results indicate the general occurrence of tyrosine nitration as the 

effect of stress situations, which assigns nitration as biomarker of secondary nitrosative stress. At 

the same time, the existence of physiological nitroproteomes supposes regulatory function for 

nitration.  

Tyrosine nitration can be considered as a selective process but consensus sequence 

within the target protein does not ensure this specificity.  Instead, several factors provide 

selectivity and specificity such as the centrifugal-centripetal position of the tyrosine residue 

within the 3D structure of the protein, the subcellular location of the target protein, and also the 

secondary structure of the protein are important determinants of the nitration (Yeo et al. 2015). 

Despite the lack of a consensus sequence in the protein primary structure, some common features 

have been revealed, such as the presence of acidic residues (glutamic or aspartic residues) 

neighbouring to the YNO2 site, cysteine or methionine next to the target Tyr and the presence of 

loop-forming amino acids such as proline or glycine (Souza et al. 2008). 

 

5. Evolutionary considerations 

 

Since the conservation of signalling pathways throughout evolution can be considered 

as a hallmark of their relevance in the homeostasis of an organism (Bottari 2015), we have to 

raise the question whether protein nitration in the plant kingdom is conserved or not. 

Mammalian-like nitric oxide synthase (NOS) enzymes are present in algae but seems to be 

absent in land plants (Jeandroz et al. 2016, Santolini et al. 2016) where NO production is based 

mainly on nitrate/nitrite reduction (Kumar et al. 2015). At the same time, L-arginine dependent 

NOS-like activities were detected in higher plants, which can be explained by the possible 

existence of cooperating complexes of NO producing enzymes having the same requirements 

like mammalian NOS (Corpas and Barroso, 2016). The difference in NO producing systems in 

marine green algae and in higher land plants raises the possibility of diverse processes of protein 
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nitration. In  the photosynthetic prokaryote (Calothrix BI22 cyanobacterium) endogenous 

peroxynitrite generation was detected (Pérez et al. 2016), while in Anabaena 7120, PII signal 

protein involved in nitrogen metabolism was shown to be nitrated at  Tyr-51 which was 

hypothesized to cause gain of function (Zhang et al. 2007). In photosynthetic eukaryote algae, 

NO is synthetized by NOS enzymes (Foresi et al. 2010) but there is no evidence for endogenous 

peroxynitrite formation. What’s more, some algal species are able to produce substances 

involved in peroxynitrite detoxification (Chung et al. 2001, Seo et al. 2004). Till this date, there 

is no direct experimental evidence showing that algal species undergo protein nitration. 

Therefore, detection and identification of nitrated proteins (if any) in algae may be a promising 

future research task. 

 

6. Tools for detecting tyrosine nitration in higher plants: immune-affinity based 

approaches and bioinformatics 

 

The experimental detection of 3-nitrotyrosine in biological systems proved to be 

problematic, partly due to the low abundance of the nitrotyrosine-containing proteins. The 1D 

and 2D gel electrophoresis followed by immunoblotting probed with anti- 3-nitrotyrosine 

antibodies are widely used techniques in plant studies. The nitrated proteins are identified by 

mass spectrometry and the nitration site(s) within the protein quaternary structure can be 

determined by MALDI-TOF MS and LC-MS/MS (Yeo et al. 2015). To date, most of the 

performed plant studies applied immune-affinity based approaches to identify tyrosine nitrated-

proteins (e.g. Corpas et al. 2008, Lozano-Juste et al. 2011, Cecconi et al. 2009, Tanou et al. 

2012, Begara-Morales et al. 2013ab). Although, non-specific antibody binding may result in 

false positive detection and the identified protein occasionally does not match in the protein 

database (Corpas et al. 2013). Great efforts are being made to eliminate the above mentioned 

technical problems through the continuous improvement of mass spectrometry assays (Ng et al. 

2013). In Table 2, the few plant proteins are listed in which nitrated Tyr residues have been 

identified so far. These results have been achieved over the past five years parallel to the 

improvement of analytical techniques. 

In the last decade, the demand for the cognition of exact PTN sites increased, which 

motivated the development of specific computational tools. In contrast to the lengthy and often 

technically problematic proteomic approaches, these software tools are capable of rapidly 

generate extensive information for further experiments. The Group-based Prediction System 
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YNO2 (GPS) was the first algorithm developed for predicting nitrated tyrosine residues based on 

the biochemical properties of neighbouring amino acids (Liu et al. 2011). Using cross-validation, 

the algorithm showed promising performance (accuracy of 76.51%, sensitivity of 50.09%, 

specificity of 80.18%). Predictions can be performed at three different threshold levels (low, 

medium, high). Moreover, whole proteome analysis can easily be carried out with the help of 

“Batch Predictor” tool of GPS-YNO2. The software contains also a “Domain Graph” tool with 

which domain structures of proteins can be drawn, and YNO2 sites can be indicated. Recently, 

Xu et al. (2014) has developed novel predictor software called iNitro-Tyr. It is based on the 

incorporation of the position-specific dipeptide propensity into the general pseudo amino acid 

composition which makes possible to discriminate the nitrotyrosine sites from the non-nitrated 

positions. Besides the length of the submitted amino acid sequence, this algorithm represents the 

total number of tyrosine residues within the protein sequence which is useful information. Also, 

iNitro-Tyr is capable of performing whole proteome predictions. Both software, GPS-YNO2 and 

iNitro-Tyr are easy to handle and freely available on-line (http://yno2.biocuckoo.org/ and 

http://app.aporc.org/iNitro-Tyr/, respectively).  

In the present study, the nitration sites were predicted in proteins presented in Table 2 

using GPS-YNO2 and iNitro-Tyr software. In total, 26 YNO2 sites were experimentally 

determined in the eleven proteins, and both programs predicted similar number of YNO2 sites 

(22 and 23, respectively) meaning that ~ 84-86 % of the total number of tyrosine nitration sites 

were successfully indicated by the algorithms. This is similar to the human proteome, where 

~85% of the experimentally identified YNO2 sites were predicted in silico using GPS-YNO2 

software (Ng et al. 2013). Furthermore, from ten of the eleven nitrated proteins justified by mass 

spectrometry, nitration sites were forecasted by GPS-YNO2 program. Regarding iNitro-Tyr, only 

eight from the total eleven proteins proved to be predicted as candidates. Although, it should not 

be ignored that there are only four predicted nitration sites in the eleven proteins that was 

experimentally evidenced meaning that the nitration sites predicted and experimentally 

determined show slight match. The relative big difference between the actual YNO2 sites and the 

predicted ones may originate partly from the fact that MALDI based methods applied for the 

identification of nitrated tyrosine residues have some disadvantages. The modified peptide may 

decompose during the ionization and may form several decay products which makes these 

techniques challenging and often unreliable (Ytterberg and Jensen 2010). On the other hand, 

prediction algorithms like GPS-SNO or GPS-YNO2 do not consider the second or three 

dimensional protein structures (Chaki et al. 2014), which can be another reason for the moderate 

correlation between the predicted and actual YNO2 sites. 
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Using on-line software tool, the whole Arabidopsis tyrosine nitroproteome can be 

predicted. From the TAIR database, 27 416 amino acid sequences were downloaded and the 

YNO2 sites were determined in them using the “Batch Predictor” tool of GPS-YNO2 1.0. Of 

these, 26 592 proteins (97%) contain at least one tyrosine residue, in total 122 403 tyrosines were 

identified in Arabidopsis proteome. Using computational prediction, 38% of all tyrosine residue 

(46 623 nitrated sites) was found to be nitrated in 19 901 proteins (74.8% of the whole tyrosine 

proteome) meaning that 72.5% of all Arabidopsis proteins can be candidates for tyrosine 

nitration. Consequently, Arabidopsis thaliana supposedly has a tyrosine nitroproteome 

containing approximately 20,000 proteins. Interestingly, in the human proteome, similar number 

of YNO2 sites (41 623) was predicted in fewer protein candidates (14 454) (Ng et al. 2013). In 

case of the other NO-related posttranslational modification (PTM), S-nitrosylation, 60% of the 

cysteine proteome was predicted to be affected (Chaki et al. 2014). This means that the size of 

predicted tyrosine nitroproteome is 16% bigger than the cysteine nitrosoproteome in Arabidopsis 

(Fig 3). Considering the possibility that a protein containing both tyrosine and cysteine residues 

is able to be modified by both NO-related PTMs, S-nitrosylation sites were predicted in nitrated 

protein candidates using GPS-SNO 1.0 algorithm. From the 19 901 nitrated candidates, 11 917 

was found to be susceptible also for S-nitrosylation, thus ~60% of the tyrosine nitroproteome 

may be S-nitrosylated as well. This suggests a considerable overlap between the two NO-

dependent redox PTMs, which beside the common features (e.g. NO-dependence, redox nature) 

have several differences (e.g. affected amino acid residue, reversibility) as well. There are only 

few experimental evidences for proteins affected by both PTMs. For instance, ascorbate 

peroxidase (APX) was shown to be induced by S-nitrosylation of a particular cysteine residue, 

while down-regulated by nitration of Tyr235 (Begara-Morales et al. 2013b). Interestingly, GPS-

SNO (medium threshold) did not identify this protein as candidate for S-nitrosylation (data not 

shown). Also the abscisic acid receptors PYR/PYL/RCAR are under dual regulation, since the 

nitration of three tyrosine residues resulted in their inhibition, while S-nitrosylation caused their 

activation (Castillo et al. 2015). Although, neither GPS-YNO2 (medium threshold) nor iNitro-

Tyr predicted nitration sites in these proteins (Table 2). 

In Arabidopsis, 127 nitrated proteins have been previously identified by LC-MS/MS 

(Lozano-Juste et al. 2011). In this large-scale study, the exact sites of tyrosine nitration of most 

proteins were not experimentally determined. We carried out further in silico analysis in order to 

compare the experimental data with the predictions (Table S1). From 126 experimentally 
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identified nitroproteins, 115 proteins (91.2%) were predicted by GPS-YNO2 program (medium 

threshold), which means good efficiency. From the total 2245 tyrosine residues being present in 

the 126 nitroproteins, 422 were predicted to be nitrotyrosine. The highest number of YNO2 sites 

relative to the total number of tyrosine residues was predicted in the following proteins: actin-2, 

actin-7, heat shock 70 kDa, malate dehydrogenase and adenine phosphoribosyltransferase. To 

determine the proteins in which the prediction has the highest certainty, score/cutoff values for 

each clusters were calculated. Twelve proteins (10% of all) with the highest score/cutoff values 

were selected and considered as 10% highest confident candidates as described by Chaki et al. 

2014. Among them e.g. ABC transporters, heat shock proteins and tubulins can be found (Table 

S2). According to our knowledge, there is no detailed study regarding the modification of plant 

ABC transporters by tyrosine nitration, which makes these proteins potential candidates for 

further research. In neurons, the nitration of a single tyrosine in heat shock 90 proteins (Hsp 90) 

protein has been reported to result in cell death (Franco et al. 2013) and the nitration of Hsp 90 in 

cancer cells down-regulated mitochondrial activity (Franco et al. 2015). In plant systems, 

similar, detailed study on the effect of tyrosine nitration on Hsp chaperons has not been 

conducted so far. Similarly to ABC transporters and Hsp70s, both serine glyoxalate 

aminotransferase (At2g13360) acting in photorespiration and in asparagine metabolism 

(Liepman and Olsen 2001) and germin-like protein (subfamily 2 member 5, At5g26700) playing 

a role in plant defence are highly confident nitroprotein candidates. Apart from their Tyr 

modification further details (such as number and position of YNO2 residues, functional effect) 

have not been revealed yet. Contrary, the fact and the exact site of tyrosine nitration in ascorbate 

peroxidase has already been revealed. Moreover, the inactivation of APX as the consequence of 

nitration was supposed to contribute to the accumulation of reactive oxygen species (ROS) and 

oxidative stress (Begara-Morales et al. 2013b). Considering that the above mentioned proteins 

are highly confident candidates in computational prediction and their tyrosine nitration has not 

been experimentally verified, these proteins seem to be excellent objects for detailed future 

research.  

 

7. Conclusions and future objectives 

Using the search expression “protein nitration in plant”, Scopus listed 130 papers 

published in 2016 reflecting that this is an intensely developing area of plant biology. 

Nevertheless, there are numerous unanswered questions which this paper intended to draw up 

and summarize appointing new research directions regarding tyrosine nitration of plant 
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proteome. Still, there is uncertainty about the existence of plant denitrases and consequently 

about the reversibility/irreversibility of PTN. Similarly, the possible involvement of proteasomal 

degradation in the removal of nitrated proteins needs to be strengthened. Moreover, the 

examination of nitration in evolutionary point of view may provide interesting new clues. 

Revealing the functional consequences of tyrosine nitration thus its role in the regulation of 

protein activity should be top priority later on. The cost-efficient computational analyses 

presented in this review can be used for establishing and completing time-consuming and 

expensive proteomic work but it is clear that the computational mapping tools cannot substitute 

the experimental procedures. Similarly to cysteine S-nitrosylation, tyrosine nitration is an 

enzyme-independent covalent amino acid modification, which is therefore influenced by several 

factors providing biological selectivity (e.g. subcellular location of the protein, the concentration 

of nitrating agents in the microenvironment). More importantly, tyrosine residues located in loop 

structures have higher affinity to nitration; therefore the secondary structure of the protein 

supposedly plays pivotal role in determining the intramolecular position of nitration (Yeo et al. 

2015). The prediction algorithms have been developed so far, are based on the primary protein 

structure, which can be the reason for the moderate correlation between the predicted and actual 

YNO2 sites. 

Based on the above, it has to be admitted that both the in silico predicting tools and the 

experimental approaches must be developed in the near future in order to achieve more accurate 

knowledge about the mechanism and the significance of protein tyrosine nitration in plant 

systems.   
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FIGURE LEGENDS 

Fig 1 Biochemistry of tyrosine nitration.  

Production of direct tyrosine oxidant (OH
.
 and CO3

.-
) and tyrosine nitrant (

.
NO2) radicals

 
from 

peroxynitrite via three (1,2,3) chemical pathways involving the formation of peroxynitrous acid 

(ONOOH, 1), nitroso-peroxocarboxylate (ONOOCO2
-, 2) or nitrite (NO2

-
, 3). The production of 

peroxynitrite from 
.
NO and O2

.- is also depicted. Direct oxidants like OH
.
 and CO3

.- 
are involved 

in the formation of tyrosil radical, while 
.
NO2 catalyses the addition of a nitro group and the 

consequent formation of 3-nitrotyrosine. 

 

Fig 2. Fates and consequences of PTN. 

Possible mechanisms regulating nitrated protein pool (left) and possible functional, signalling 

consequences of tyrosine nitration (right).  The nitro group in tyrosine residue can be reduced, 

but neither enzymatic nor non-enzymatic reductants have been identified in plants or in animals. 

Denitrase activity has been characterized in animals but not in plants consequently the 

reversibility of tyrosine nitration is still questionable. Formation and accumulation of 

proteasome-resistant protein aggregates can also be conceivable. Nitrated proteins can be 

targeted for polyubiquitination and for proteasomal degradation as it was evidenced by Castillo 

et al. 2015. Nitration may cause structural and consequently functional modifications 

(inactivation, activation) in proteins. In plants, evidences available for PTN-triggered functional 

loss or unaffected activity (Begara-Morales et al. 2015). Moreover, nitration of tyrosine amino 

acid may interfere with phosphorylation. In plants, the converse regulation of Tyr 

phosphorylation and nitration has been evidenced which raises the possibility of competition 

between the two post-translational regulatory processes (modified from Souza et al. 2008). 

 

Fig 3. Predicted nitroso- and nitroproteome of Arabidopsis. 

Schematic representation of the size of predicted Arabidopsis cysteine (nitroso)proteome (the 

data are published by Chaki et al. 2014) and tyrosine (nitro)proteome. The GPS-YNO2 software 

was downloaded at yno2.biocuckoo.org/ and used to predict tyrosine nitration sites (Liu et al. 

2011). In total, 27 416 amino acid sequences were extracted from the Arabidopsis Information 

Resource (TAIR, www.arabidopsis.org/ TAIR10_pep_20110103_representative_gene_model). 

The data were collected in an Excel file for further analysis. Amino acid sequences (27 416) in 

FASTA format were submitted to the software and the prediction was performed using medium 
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threshold and “Batch Predictor” tool. The prediction results (position, peptide, score, cutoff, 

cluster) were extracted into an Excel file for further analysis. 

 

Table 1 Comparison of some physiochemical properties of reactive intermediates involved in 

tyrosine nitration. 

 

Table 2 List of plant proteins in which the nitrated tyrosine residues have been experimentally 

identified. The effects of tyrosine nitration on the activity of the affected proteins are also 

described. “n.d” not determined. Nitration sites in the listed proteins were computationally 

predicted using GSP-YNO2 1.0 and iNitro-Tyr software. „Y” in bold matched tyrosine residue, 

„-„ non-predicted site.  

 

Table S1 Number of nitrated sites from experimentally identified nitrated proteins predicted by 

GPS-YNO2 1.0. Tyrosine nitrated proteins (126) in wild-type Arabidopsis thaliana published by 

Lozano-Juste et al. (2011) were analysed using GPS-YNO2 1.0 software. „-„ non-predicted site. 

(.doc) 

 

Table S2 Predicted nitrated proteins with the highest score/cutoff values reflecting highest 

prediction confidence. Prediction was performed using GPS-YNO2 1.0 program. (.doc) 
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Table 1 Comparison of some physiochemical properties of reactive intermediates involved in tyrosine nitration. 

 

       

  

    

Superoxide anion          
(O2

.-) 
  Nitric oxide                        

(.NO) 
  Peroxynitrite                  

(ONOO-) 
Nitrogen dioxide 

(.NO2) 

Radical                             
character  

yes 
 

yes 
 

no yes 

Charge  
negatively charged 

 
non-charged 

 
negatively charged non-charged 

Half-life (ms)  
0.002-0.004  

 
5000-15 000 

 
< 10  < 0.01 

Diffusion                                 
distance (µm)   ~ x 10    100-200    4 ~0.2 
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Table 2 List of plant proteins in which the nitrated tyrosine residues have been experimentally identified. The effects of tyrosine nitration on the 

activity of the affected proteins are also described. “n.d” not determined. Nitration sites in the listed proteins were computationally predicted 

using GSP-YNO2 1.0 and iNitro-Tyr software. „Y” in bold matched tyrosine residue, „-„ non-predicted site.  

 

 

  Tyr-NO2 sites 
predicted 

 

Protein name 
Accession 
number 
(UniProt) 

Total 
number 
of Tyr 

Consequence              
of Tyr nitration 

Tyr-NO2 
experimentally 
identified 

GPS-
YNO2 1.0 iNitro-Tyr Reference 

 

Metionine synthase  O50008 26 decreased activity Y287 
Y463, Y469, 
Y698 

Y141, Y623, 
Y650 

Lozano-Juste et al. 
2011  

O-acetylserine(thiol)-lyase   P47998 7 decreased activity Y302 Y158 - Álvarez et al. 2011 
 

Photosystem II protein D1  P83755 12 Monomerization 
of PSII dimers 

Y262 
Y73, Y107, 
Y237,Y246 

Y246 
Galetskiy et al. 
2011  

Isocitrate dehydrogenase 
[NADP]  Q6R6M7 14 decreased activity Y392 

Y69, Y210, 
Y221, Y274 

Y172, Y185, 
Y221, Y233, 
Y241, Y259, 
Y274 

Begara-Morales et 
al. 2013a  
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L-ascorbate peroxidase, 
cytosolic  P48534 7 decreased activity Y5, Y235 Y5 Y5, Y93 

Begara-Morales et 
al. 2013b  

Hydroxypyruvate 
reductase, peroxisomal 

Q9C9W5 11 decreased activity Y97, Y108, Y198 
Y10, Y108, 
Y150 

Y10, Y150, 
Y251 

Corpas et al. 2013 
 

Abscisic acid receptor 
PYR1 O49686 4 decreased activity Y23, Y58, Y120 - - Castillo et al. 2015 

 

Superoxide dismutase [Mn] 
1, mitochondrial 

O81235 10 decreased activity Y38, Y40, Y63, Y67, 
Y198, Y199, Y202 

Y63, Y226 
Y63, Y67, 
Y226 

Holzmeister et al. 
2015  

Leghemoglobin-1 P02232 3 

peroxynitrite 
scavanging, 
protection of 
bacteroids 

Y25, Y30, Y133 Y134 - Sainz et al. 2015 
 

Monodehydroascorbate 
reductase I Q66PF9 22 decreased activity Y213, Y292, Y345 Y154, Y340 

Y7, Y192, 
Y292 

Begara-Morales et 
al. 2015  

Oxygen-evolving enhancer 
protein 1-1, chloroplastic 

P23321 8 n.d Y9 
Y94, Y102, 
Y328 

Y236 
Takahashi et al. 
2015  
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HIGHLIGHTS 

 

• Protein tyrosine nitration (PTN) causes functional loss in plant proteins 

• Reversibility and evolutionary conservation of plant PTN are still questionable 

• Predicted nitroproteome of Arabidopsis consists of ~20,000 proteins  
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