Abstract. The focus of this mini-review is to identify non-toxic compounds isolated from natural sources (plants) that exhibit specific activity against efflux pumps of specific multidrug-resistant (MDR) cancer cell lines, inhibit proliferation of the MDR cancer cell lines and inhibit the activity of overexpressed efflux pumps of the MDR cancer cell line.

Therapy of cancer, if not completely effective, results in the overexpression of genes that code for efflux pumps that extrude the noxious agent (anticancer drug) before it reaches its intended target of the cancer cell (1). The overexpressed efflux pump renders the cancer cell immune to not only the initial drug used in therapy but to a wide range of unrelated noxious compounds (1). The arising of this multidrug-resistant (MDR) phenotype makes therapy highly problematic and the end result is that the patient succumbs to the disease (1). Therefore, it is the consensus of many that therapy of MDR cancer may succeed if the responsible efflux pump is inhibited from its activity, therefore, affording the increased concentration of anticancer drug to a level consistent with its toxic targeted action needed to kill the cancer cell. To this extent, over 100,000 synthetic compounds for activity against the known efflux pumps of cancer cell types have been screened by the National Cancer Institute (USA) and, to date, not a single inhibitor has found its way toward successful therapy of MDR cancer. In fact, because normal counter type cells have a fully functional efflux pump, albeit at a much lower level of activity, clinical trials with selected efflux pump inhibitors have produced high toxicity and even death.

During the past two decades, traditional medicine has become a source for the identification of plants that harbor compounds that may have important potential for the therapy of cancer. With respect to the laboratory of one of the authors of this mini-review (JM), literally, hundreds of plants have been studied for their activity against specific targets of the cancer cell and it is the focus of this mini-review to identify selected compounds that have no toxicity at the level of their study and which have activity against proliferation or induction of the apoptotic mechanism or the efflux pump responsible for the phenotype of the MDR cancer cell.

This article is freely accessible online.

Correspondence to: Leonard Amaral, Travel Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal. Tel: +351 213652600, Fax: +351 213632600, e-mail: lamaral@ihmt.unl.pt

Key Words: Non-toxic compounds isolated from natural sources (plants), multidrug-resistant cancer cell lines, induction of apoptosis, inhibition of P-glycoprotein (ABCB1), reversal of multidrug resistance, review.
most part, not completely understood.

Apoptosis. Programmed cell death or apoptosis maintains homeostasis; furthermore, it has a major impact on the evolution of organs. However, defect in apoptosis can cause cancer and the suppression of apoptosis during carcinogenesis may play a crucial role in the development of some cancer types (2). Apoptosis is characterized by different morphological changes, such as cell membrane blebbing, cell shrinkage, nuclear fragmentation, chromatin condensation and chromosomal DNA fragmentation (3, 4). In order to promote phagocytosis of apoptotic cells by macrophages, apoptotic cells present specific membrane morphologies to activate this process. One of these changes is the translocation of phosphatidylinerine from the inside of the cell to the outer surface, followed by membrane blebbing and small vesicles called apoptotic bodies (5). In the early stages of apoptosis, caspases are activated in order to initiate and accomplish the cleavage of essential cellular components. Caspases can be activated by either of the two known apoptotic signaling pathways, i.e. intrinsic (mitochondria-mediated) and extrinsic (death receptor-mediated) pathways. In addition, there is a third pathway, described as intrinsic endoplasmic reticulum (ER) pathway, which involves the ER and is based on the oxidative stress response (6). These pathways and their components are targets for agents that are designed to kill cancer cells and, because many compounds isolated from botanical sources have effects on cancer cells that display qualitative and quantitative properties that differ significantly from their normal counterpart cells, we have investigated the potential effect of compounds isolated from natural sources to induce apoptosis in cancer cells and distinguish these effects from effects of the agents on overexpressed efflux pumps that contribute to the multidrug resistance of some cancers.

Efflux Pumps

The major mechanism responsible for the MDR phenotype of MDR cancer cells is the overexpression of ATP-dependent transporters that belong to the ATP-binding cassette (ABC) family. These ATP-dependent transporters extrude noxious agents from the cancer cell before they reach their intended targets. These transporters are termed efflux pumps (EPs) and three major types have been identified for specific cancer cell lines: the ABCB, which has been the most studied of the three EPs, also known as ABCB1 or MDR1 or P-glycoprotein (Pgp1), the ABCC, also known as ABCC1 or MRP1 or ABCC2 or MRP2 or, infrequently, specified as ABCC3–6 and ABCC10–11, as well as the ABCG also known as ABCG2 or MXR or BCRP. The overexpression of these ABC EPs and the resistance of MDR cancer cells to anticancer agents are of obvious importance for chemotherapy of MDR cancer.

Pgp1 (ABCB1/MDR1) was isolated from Chinese hamster cell lines in the laboratory of Victor Ling in 1976 and its amino acid sequence determined by the same investigating laboratory in 1989 (7). From these and other studies involving the human Pgp1, the structure of Pgp1, as it may appear on the plasma membrane of an MDR cancer cell, is presented by Figure 1.

Briefly, Pgp1 is a 170-kDa transmembrane protein that consists of two halves; the N-terminal half of the molecule contains 6 transmembrane domains that is followed by a large cytoplasmic domain with an ATP-binding site and, then, a second section with 6 transmembrane domains and an ATP-binding site that has amino acid similarity with the first half of the polypeptide. The substrate binding sites are formed by the transmembrane domains. The binding of the substrate takes place simultaneously with the binding of ATP and its hydrolysis. Hydrolysis of ATP alters the conformation of the Pgp1 and the bound substrate is released to the surface of the cell. The release of the substrate results in the restoration of Pgp1 conformation that is now ready to accept another noxious molecule for binding and another ATP for hydrolysis.

The inhibition of Pgp1 can occur via three pathways: (i) Direct binding of the inhibitor by the substrate binding site of the Pgp1 domain. Binding may be competitive, meaning that, as the concentration of the inhibitor is increased, the greater the probability that noxious agent remains in the cytoplasm of the cell, or, it may be non-competitive, which means that the affinity of the inhibitor for the substrate binding site is significantly greater than that of the noxious substrate. Irreversible binding of the inhibitor, although possible, is not useful since the same irreversible binding would take place with Pgp1 proteins of normal cells, thus compromising the life of the patient. (ii) Inhibition of the ATP binding domain denying the conformational changes needed for translocation of the noxious substrate. (iii) Inhibition of ATP synthesis from glycolysis within the MDR cancer cell. Although this latter path may also affect normal counterpart cells, because most cancer cells have impaired mitochondria, ATP sources are primarily glycolytic, normal cells may not be as severely affected as the MDR cancer cell.

Efflux Pump Models Used for the Investigations Described in this Mini-review

A cell line used for determination of effects of compounds from natural sources on efflux is a murine lymphoma cell that has been transfected with the human *MDR1* gene that codes for Pgp1 (9). It is important to note that the parental mouse lymphoma cell line has its own efflux pump. However, the sensitivity of the method used for determining the effects of a compound on the retention of an anticancer drug (efflux assay employing the fluorescent substrate rhodamine 123 and its assay via flow cytometry) is below
the threshold of detection. Hence, the effects noted are directly related to those on the efflux of rhodamine 123 by the presence of the human MDR1 gene that has been transfected into the mouse lymphoma cell line.

An additional method that is fully automated has been developed by our laboratory for the measurement of efflux of the fluorescent substrate ethidium bromide. This method, completely described by Spengler et al. (10) provides real-time data on influx/efflux parameters under defined conditions of temperature, time, concentrations and physiological constituents of the media, such as pH, ionic strength, etc. Examples of data obtained from flow cytometry and ethidium bromide methods are presented in Figure 2.

Activity of Non-toxic Compounds Isolated from Natural Sources (Plants) on MDR Cancer Properties

Traditional medicine is now widely considered for the identification of plants that are known to have medicinal qualities. Because, for almost all cases, the remedial activity of the untreated plant is moderate to nominal for specific pathologies due to the limitations imposed by the largess of plant that must be ingested, the need for isolation of the responsible compound and subsequent medicinal chemistry approaches must be taken. With respect to our two plus decades’ attention to plant sources for compounds that may have significant potential for therapy of MDR, the following sections identify the plant sources, the identity of the compound isolated and the property of the MDR cancer cell affected (proliferation, apoptotic mechanism, efflux pumps).

Terpenoids: Diterpenes and Triterpenes

Diterpenes and Triterpenes are classes of chemical compounds composed of two and three terpene units, respectively (Figure 3 – example of a triterpene) with the molecular formula C20H32 and C30H48, respectively and are made by animals, plants and fungi.

This class of compounds contains members with biological activities against two of the most important diseases: multidrug-resistant tuberculosis (11-13) and multidrug-resistant cancer (14, 15). Because the triterpene structure is central to all steroids, ecdysteroids produced by plants and insects have been studied for their anticancer properties as well (16-18). Derivatives of anticancer triterpenes have also received attention (19). The anticancer properties of specific diterpenes and triterpenes are inhibition of the replication of cancer cells by affecting the S phase of DNA synthesis (20) supposedly by inhibiting DNA polymerase activity (21), activating the apoptotic pathway (20-23) and inhibiting the activity of the efflux
pump Pgp1 of cancer cell lines (14-23). The inhibition of DNA synthesis by direct inhibition of DNA polymerase and induction of apoptosis are important anticancer targets being affected by some diterpenes and triterpenes. However, it is the effect of this class of compounds on the activity of Pgp1 (the main efflux pump of most multidrug-resistant cancer cells responsible for the multidrug-resistant phenotype) that deserves major attention given that, by inhibiting the pump, the cancer cell becomes susceptible to cytotoxic drugs to which it was initially resistant. Non-cancer cells have the same efflux pump that is overexpressed by multidrug-resistant cancer cells. Consequently, the efflux pump activities of terpenoids would be expected to produce toxicity against normal cells. However, the concentrations that are proven to be effective in vitro for the inhibition of the efflux pump of cancer cells, whenever studied, have expressed little or no cytotoxic activity against normal cells. Nevertheless, because the efflux pump of normal cells will similarly be affected by the terpenoid compound, one would expect that the adjuvant use of the terpenoid would promote an even greater negative effect of the anticancer drug against normal cells. Perhaps, this negative effect can be acceptable if the activity of the anticancer agent is effective against multidrug-resistant cancer, which would make therapy of multidrug-resistant cancer less problematic or even successful.

Sources of Important Terpenoids with High Potential for Therapy of Multidrug-resistant Cancers

1. Carpobrotus edulis. During Professor Molnar’s visit to my home (L. Amaral) in 2001 and one of the many walks along the coastal cliffs of Cascais, Portugal, a particular plant “stole” his attention from our discussion of future research plans and the role of his Cost Action B16 recently funded by the European Commission. As one would have it, the specific plant that drew his attention was prominently displayed at the edge of a cliff some 50 meters above the pounding surf. The precarious position of this plant did not faze Professor Molnar; he approached it and examined it for he had never seen this plant before. He asked me if I knew the species and I responded that, although I did not know its name, the entire coastal area of Portugal is inundated with this plant and that there was no need to take any further risk if he had an interest in the plant. In a much safer area few meters away, the plant was in abundance and Professor Molnar took a few samples that consisted of the yellow flower, fleshy stem and roots supposedly for further study. A few weeks after his return to Szeged, Hungary, he called me and excitedly told me that the methanol extract caused his cell model of multidrug-resistant mouse lymphoma cells transfected with the gene that codes for the human efflux pump protein Pgp1 to become fully...
susceptible to doxycyclin, a cancer drug to which the hybrid cell line was initially resistant via the overexpression of its efflux pump. Knowing that my assistant’s father Professor Viveiros was Portugal’s premier botanist and Professor Emeritus of the University of Lisbon, I asked his son Dr. Miguel Viveiros if his father could identify the plant and provide as much information as possible. The plant was identified by Professor Viveiros as C. edulis, a member of the Aizoaceae family and, hence, a potential source of alkaloids with neuroleptic activity (34). It is about a common, nuisance plant that grows on the coast of Portugal and has its origins in coastal areas of South Africa where it is known as “Hottentot-fig” since its fig-like fruit is edible. The species is represented by two varieties one that produces a yellow flower and the other a purple flower. Cross pollination is common and the hybrid products are indistinguishable from the purple yielding variety. However, the degree of successful frequency of hybrids is dependent upon the salinity of the coastal soil (35). The information provided perked our interest in Portugal since the neuroleptic thioridazine had been shown by Amaral’s group to have remarkable in vitro (36) and ex vivo activity (37). Thus, a joint study was undertaken between the Molnar and Amaral group that would examine the methanol extract for properties against multidrug-resistant cancer and multidrug-resistant Mycobacterium tuberculosis and then isolate the active compounds and determine their mode of action(s). Briefly, the results of the cancer component of the study (38) show that the extract is non-toxic at concentrations that inhibit a verapamil-sensitive efflux pump of the L5178 mouse T cell lymphoma cell line, thereby rendering these multidrug-resistant cells susceptible to anticancer drugs. These non-toxic concentrations of the methanol extract also prime THP-1 human monocyte-derived macrophages to kill ingested Staphylococcus aureus, promote the release of lymphokines associated with cellular immune functions and induce the proliferation of THP-1 cells within 1 day of exposure as is the case with phytohaemagglutinin. The potential role of the compound(s) isolated from Carpobrotus edulis in cancer biology and related immunological events during development of cancer was intriguing and prompted a study that would isolate the biologically active compounds of the extract and study them in detail with respect to inhibitory properties, such as replication, induction of apoptosis and inhibition of the Pgp1 efflux pump responsible for resistance of multidrug-resistant cancer cell lines. This study involved a bioassay-guided separation protocol, including the testing of the extracts, fractions and pure compounds for their ability to inhibit P-glycoprotein responsible for multidrug resistance of the mouse lymphoma cells containing the human efflux pump gene MDR1 and led to the isolation of seven compounds from the chloroform and ethyl acetate soluble fractions of the methanolic extract of Carpobrotus edulis. The compounds were identified by 1-Dimension, 2-Dimension NMR and MS investigations as triterpenes (beta-amyrin, uvaol and oleanolic acid), monogalactosyldiacylglycerol, catechin, epicatechin and procyandin B5. The triterpene uvaol was the most effective, non-toxic and promising compound for development as an adjunct to doxycyclin therapy of multidrug-resistant cancer (39).

2. Euphorbia portlandica. The genus Euphorbia contains almost 1,600 species characterized by the presence of white milky, usually toxic, latex. Nevertheless, this group of plants has been the subject of intense physiochemical research during recent years due to the wide-spread use of its members in traditional medicine. The compounds isolated from its extracts include: flavanoids, terpenoids, alkanes, amino acids and alkaloids many of which have shown potential in the therapy of important pathologies. Euphorbia portlandica, a species of flowering plant, belongs to this family and is endemic to coasts of Western Europe ranging from Portugal, the northern coasts of Spain and France and as far north as Scotland. The first report of anticancer properties of compounds isolated from a methanol extract of the whole plant of Euphorbia portlandica was made in 2004 from the collaboration between Professor Maria-Jose Ferreira of the University of Lisbon and Professor Joseph Molnar (40). The active compounds were identified as diterpenes (5’beta,9’alpha,10’alpha)-7-0-(3alpha-methoxy-8’(12’)-drimen-11’-yl)-scopeotin, designated driportlandin (compound 1) and a new abietane quinoid diterpene 16-hydroxy-abeta-8,12-diene-11,14-dione, named portlanquinol (compound 2). Although both compounds 1 and 2 were found to reverse the resistance of mouse lymphoma cells transfected with the Pgp1 gene, compound 2 was found to be toxic. In 2006, further collaboration between Joseph Molnar and Maria-Jose Ferreira resulted in the isolation and characterization of 12 tetracyclic triterpenes from an acetone extract of Euphorbia portlandica (41). The new triterpenes were shown to reverse the resistance of the mouse lymphoma cell line model (42).

Additional terpenoids from the genus Euphorbia have been isolated, identified, characterized and examined regarding their biological properties by the Molnar-Ferreira collaboration and
each has been shown to have distinct properties that inhibited replication, induced apoptosis and inhibited the efflux pump machinery of the mouse lymphoma cell line transfected with the human gene that codes for the Pgp1 transporter (28, 43, 44). These studies indicate that the genus *Euphorbia* is a rich source of terpenoid compounds that have important potential for therapy of multidrug-resistant cancer. Because this genus contains almost 1,600 species, the interested reader has an open field for drug discovery of new anticancer agents whose sources are the species that make up this genus.

References

Conclusion/Summary/Questions

There are some questions that require answers, however, prior to serious consideration of adjuvant use of tripterinoids. A large study that quantifies the ability of each reported active tripterinoid to reverse resistance of members of a panel of multidrug-resistant cancer cells to given anticancer agents (i.e. inhibit the main efflux pump responsible for multidrug resistance) is needed. The identified major active compounds would also need to be evaluated for cytotoxic activity against a panel of normal cells. Then, it would be possible to select for clinical trial(s) bioactive tripterinoid compounds as adjuvants for specific therapies of specific multidrug-resistant cancers.

Received August 29, 2016
Revised September 8, 2016
Accepted September 9, 2016

5672