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Abstract 

Recent results suggest that insulin is synthesized by a subpopulation of neurons in the cerebral 

cortex and neural progenitor cells of hippocampus. Supplementing the slow supply of insulin 

to the brain by pancreatic beta cells, insulin locally released by neurons provides rapid means 

for the regulation of local microcircuits effectively modulating synaptic transmission and on 

demand energy homeostasis of neural networks. Modulation of insulin production by neurons 

of the brain by GLP-1 agonists might be useful in counteracting diabetes, obesity and 

neurodegenerative diseases and replacement of lost pancreatic beta cells by autologous 

transplants of insulin producing neural progenitor cells could be a viable therapy for diabetes.  

 

Multiple functions of insulin the brain 

A central concept in diabetology is that insulin promotes cellular glucose uptake, thus lowers 

the concentration of glucose in extracellular compartments of the body. Insulin mediated 

glucose uptake primarily requires the action of the  glucose uptake transporter GLUT4, 

however, in the brain, the insulin independent GLUT1 and GLUT3 are predominantly 
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responsible for glucose uptake in glial cells and neurons, respectively [1]. Accordingly, 

metabolism of the brain has been considered insulin independent for decades, but the 

discovery of insulin receptors in the brain [2] indicated that cerebral functions of insulin are 

more complex. Indeed, a series of reviews on the topic highlight that insulin is an effective 

neuromodulatory peptide with an array of effects including control of food intake and body 

weight, regulation of the reproductive or hypothalamic-pituitary-gonadal axis, influencing 

neuronal survival and modulation of memory and cognitive processes [3–6]. Moreover, the 

insulin dependence of brain metabolism has been revisited by a number of human in vivo 

studies [7–9] suggesting that insulin might also effectively regulate glucose uptake in the 

brain, especially during periods of intensive neuronal activity [10]. This is of particular 

interest for two reasons. First, neuronal ensembles of the hippocampus and the neocortex are 

engaged in increased, high frequency epochs of firing during memory formation and cognitive 

tasks and the extra metabolic demand created by intensive action potential generation might 

be met by alternative routes of supply. An unorthodox pathway of glucose supply during 

cognitive surges in energy demand was suggested by Emmanuel et al. [10] proposing that 

noninsulin-dependent GLUT1 and GLUT3 transport is sufficient for resting brain activity, 

while sustained cognitive activity induces the addition of insulin-signaled GLUT4 transport. 

Second, unlike in other organs, glucose is central for the energy metabolism of the brain and 

temporary or sustained changes in glucose supply could be crucial in differentiating normal 

and pathological functions of neural circuits. Cognitive deficits are associated with insulin 

resistance [11, 12] and impaired insulin dependent  mechanisms for glucose uptake during 

tasks requiring extra supply might lead to deficient energy metabolism [10]. Along the same 

vein, “type 3 diabetes” was suggested as an alternative term for Alzheimer’ disease [13] based 

on observations showing reduced insulin expression and signaling mechanisms in the sporadic 

form of the disease [14].  

Pancreatic insulin reaches the brain 

As outlined above, normal supply of insulin in the brain appears to be crucial for neural 

function including metabolism and, consequently, dynamic or persistent alterations in insulin 

dependent mechanisms could contribute to pathological processes. Sources of insulin found in 

the brain are not completely clear. It is generally accepted that insulin synthesized by 

pancreatic beta cells is delivered to the brain [3–6, 15, 16], but an accurate picture of this 

process is missing [17]. Pancreatic insulin circulating in the plasma finds two ways into the 

interstitial fluid immediately surrounding neurons and glial cells of the brain. The first 

pathway delivers relatively small amounts of plasma insulin through the choroid plexus to the 

cerebrospinal fluid. Plasma concentrations of insulin are an order of magnitude higher 

compared to those measured in the cerebrospinal fluid [18, 19]. Interestingly, this difference 

is increased by obesity [20] in spite of higher plasma insulin concentrations in the obese. This 

process is saturable [16, 21], but it is not clear whether saturation is caused by the potential 

involvement of insulin receptors of the choroid plexus or by the suspected contribution of 

megalin, a transporter known to mediate leptin transport across the choroid plexus and 

involved in insulin transport [22] in epithelial cells of renal tubules [23]. The second pathway 

takes insulin from the plasma into endothelial cells of the brain microvasculature. Based on 

experiments showing the ability of aortic endothelial cells outside the brain to concentrate 

insulin [24], the second pathway is hypothesized to transport the bulk of peripheral insulin to 

the brain. Mechanisms of transendothelial insulin transport in the brain were not directly 

studied to date, but one can speculate that a vesicular trafficking process, beginning with 

insulin binding to its receptor followed by the involvement of caveolae and promoted by NO 

signaling [24–27], could be involved according to experiments testing peripheral endothelia. 



The two pathways join at the Virchow-Robin space surrounded by endothelial cells, astrocytic 

endfeet and pericytes, then peripheral insulin has to pass the line of astrocytic endfeet, an 

effective filter and movement speed limiter for larger molecules [28], before reaching the 

interstitial space around neurons and glia. Absolute insulin concentrations are difficult to 

measure reliably in the interstitial space of the brain, but the relative changes detected in 

response to food intake were independent of plasma insulin concentrations [29, 30] raising the 

possibility for pancreas independent,  local insulin synthesis in the brain [4].  

Evidence for local insulin synthesis in the brain 

Whether insulin is produced locally in the central nervous system is not a trivial question to 

answer. Initial studies on the subject suggested that immunoreactive insulin is present in the 

the rat brain in concentrations 10 to 100 times higher compared to the plasma [31], but this 

was challenged by subsequent findings [32] leading to conclusions that “little or no insulin is 

produced in the bran” [33]. The heart of the problem is that experiments must be able to 

differentiate between insulin of pancreatic origin and insulin synthesized locally. Anti-insulin 

antibodies recognize the same epitopes on pancreatic and brain derived insulin, thus methods 

like anti-insulin immunocytochemistry or radioimmunoassay capable of detecting insulin in 

small amounts are not adequate. Increase in the resolution to cellular or subcellular 

localization of anti-insulin immunoreaction signals are of no unequivocal help due to receptor 

bound and internalized insulin pools being degraded or recycled to the plasma membrane 

having potentially overlapping intracellular localisation with the locally synthesized peptide 

[34]. Immunoreactions detecting peptides involved in steps of insulin synthesis which, to 

might overcome these limitations. Indeed, C-peptide, an integral part of proinsulin was 

localised to the same neurons as insulin [35–37] and proinsulin-like immunoreactivity was 

also documented in samples derived from the central nervous system  [38] arguing for local 

synthesis in the brain.  

Another strategy for detecting insulin production in the brain is to search for mRNAs of 

insulin coding genes represented by both ins1 and ins2 in mice, but only by ins2 and ins in rat 

and human, respectively. A pioneering RT-PCR study detected widespread ins2 expression in 

the rat brain throughout development [39] and the same laboratory confirmed this in rabbit 

showing ins2 expression in neurons of the hippocampus and olfactory bulb [40]. More 

recently, hippocampal granule cells from adult rats and neuronal progenitor cells derived from 

the hippocampus or olfactory bulb were also found to express insulin mRNAs [37]. 

Furthermore, expression of the ins2, but not ins1 gene was found in cortical and subcortical 

areas of the mouse brain [41, 42] and ins mRNA expression characterized human samples of 

the hippocampus, amygdala and temporal lobe in addition to olfactory bulb, cerebellar and 

pontine regions [42]. Recent methodological developments in precisely quantifying copy 

numbers of mRNAs in single neurons [43] provided an effective tool for determining ins2 in 

several rat neuron types and astrocytes in the rat cerebral cortex [44]. Interestingly, a subset 

on inhibitory GABAergic neurons, the so-called neurogliaform interneurons, expressed ins2 

mRNAs in the highest copy numbers tested, excitatory pyramidal neurons contained ins2 

mRNAs in small copy numbers and other GABAergic neurons and astroglia cells did not 

express ins2 mRNAs above detection threshold [44]. Importantly, the authors found that 

mRNA numbers were raised in response to increasing extracellular glucose concentrations 

selectively in the cell types which expressed ins2 [44] suggesting that neuronal production of 

insulin could be associated with local metabolic supply and functional demand especially in 

neocortical and hippocampal areas of the cerebral cortex.  



Function and therapeutic considerations – peripheral and central routes of insulin to and from 

neurons 

The speed of the process transporting pancreatic insulin into the cerebrospinal fluid and then 

to interstitial space of the brain is orders of magnitude slower compared to the speed of 

operation of neural networks estimated according to the lowest frequency of brain 

oscillations. Several hours of peripheral hyperinsulinemic euglycemic clamp is required to 

produce insulin levels  in the cerebrospinal fluid not reaching fasting levels [19, 21] and, 

moreover, fasting insulin levels in the cerebrospinal fluid (~7 pmol/L)[45] are insufficient for 

signal transduction through insulin receptors. Even if insulin concentrations in the 

cerebrospinal fluid are elevated to effective levels, it was estimated that the slow circulation 

of cerebrospinal fluid limits insulin delivery to the interstitial space of the brain at a rate of 

~1/600
th

 of skeletal muscles and at <1/30000
th

 of the liver [17]. Alternatively, insulin might 

move directly from the plasma through the blood brain barrier to the Virchow-Robin space 

and to the interstitial fluid, but studies examining the involvement of this route measured 

tissue content of radiolabeled insulin in brain regions [46] not allowing determination of 

insulin concentration in the interstitial fluid. To date, estimations of the speed by which 

insulin moves across the blood brain barrier are limited due to the ability of brain 

microvessels to bind insulin with high affinity without significant degradation of insulin [47]. 

Nevertheless, insulin finds its way from the plasma to the immediate vicinity of neurons, but 

equilibration of the interstitial space in the brain is achieved at timescales consistent with long 

term homeostatic regulation outside of the frequency range (~0.1-200 Hz) of membrane 

potential changes in neural networks.  

The limited speed by which external insulin is being distributed is also a factor to consider 

when delivering insulin to the brain through intranasal application [45]. This process has 

gained particular relevance following encouraging reports [48] and clinical trials [49] 

providing evidence for cognitive improvements of daily intranasal insulin administration  for 

patients with mild cognitive impairment or mild to moderate Alzheimer’s disease. 

Counteracting reduced levels of insulin in Alzheimer’s disease [13, 50] intranasally applied 

insulin raises concentrations in the cerebrospinal fluid within 10 minutes of application with 

maximal levels after 30 minutes, while plasma insulin and glucose levels remain unaffected 

[45]. How intranasal insulin reaches the brain remains mechanistically unclear [51] but can be 

stimulated by the inhibition of protein kinase C [52]. A different strategy for increasing 

insulin concentrations in key areas affected by Alzheimer’s disease like the hippocampus and 

neocortex would be to boost insulin release from neurons or neuronal progenitors expressing 

insulin locally. 

The first experiments showing local release of insulin in the cerebral cortex followed classic 

ideas of mimicking the effect of externally added compounds with endogeneously released 

substances. In this case, Molnar et al. [44] first determined that external insulin is effective in 

suppressing spontaneous excitatory potentials arriving to neurons of the neocortex, then, using 

local delivery of glucose or glibenclamide to neurogliaform interneurons (known to express 

ins2 mRNAs, see above) forced the release of an endogeneous substance which also 

suppressed spontaneous excitatory potentials. Finally, they blocked this effect with the 

specific insulin receptor antagonist S961 revealing the identity of the endogeneous substance 

as insulin. Thus, insulin can be released from a subpopulation of inhibitory neurons of the 

cerebral cortex and has an excitation suppressing effect in local neural microcircuits. Insulin 

is instrumental in moving additional GABAA receptors to inhibitory synapses [53] and 

extrasynaptic regions of the plasma membrane [54] and stimulates endocytosis of AMPA 



receptors from excitatory synapses [55] providing synergistic mechanisms for shifting the 

balance away from excitation in neural networks. It is not yet known which combination of 

neural afferents elicit insulin release from neurogliaform cells, however, it is reasonable to 

assume that strong excitatory inputs might contribute to intracellular Ca
2+

 accumulation 

required for peptide release. One can speculate that insulin release could be synchronized to 

above average overall activity in networks around neurogliaform neurons. This way transient 

local energy demand could be met by insulin release driven additional glucose transport 

through insulin dependent GLUT4 as suggested for epochs of intense hippocampal or cortical 

activity during cognitive processing [10] and, at the same time, the overall excitation 

suppressing activity of insulin might curtail energy demand. 

The effect of glibenclamide in triggering neuronal release of insulin [44] also suggests that 

delivery of substances known to enhance insulin release from pancreatic beta cells to the brain 

might have therapeutic implications. A yet to be tried strategy for increasing insulin 

concentrations in key areas affected by Alzheimer’s disease like the hippocampus and 

neocortex would be to boost insulin release from neurons or neuronal progenitors expressing 

insulin locally. Apart from sulfonylureas, incretins might represent a promising group of 

molecules to be tested for several reasons.  GLP-1 receptors are expressed  in neurons of the 

hippocampus and the neocortex [56], although the expression of GLP-1 receptors has not 

been documented on insulin expressing neurons or neural progenitor cells. Interestingly, 

however, GLP-1 agonists have similar effects on tonic inhibitory GABAergic currents as 

reported for insulin arguing for a hypothetical contribution of GLP-1 receptor mediated 

insulin release [54, 57].  GLP-1 is produced in the brainstem [58] suggesting that centrally 

synthesized GLP-1 could be effective within the brain in the mechanisms outlined above. 

However, GLP-1 produced by L-cells of the intestine crosses the blood brain barrier [58] and 

thus incretins arriving from the periphery have the possibility to enhance insulin release from 

neurons in the brain. Importantly, these peripheral incretins include GLP-1analogues 

prescribed in type II diabetes mellitus. We suggest that the weight loss caused by GLP-1 

receptor analogue based therapy (attributed primarily to the inhibition of gastric emptying 

[59])  might have an additional, synergistic component through GLP-1 receptor mediated 

insulin release from neurons of the brain. Human imaging studies suggest that the prefrontal 

cortex is crucial in the inhibitory control of food intake [60–62] and hypothetical expression 

of GLP-1 receptors on insulin releasing neurogliaform neurons of the prefrontal cortex could 

provide mechanistic support for this process. Moreover, GLP-1 receptor agonists promise 

therapeutic effectiveness against neurodegeneration in models of Alzheimer’s, Huntington’s 

and Parkinson’s disease [63, 64] and scenario of GLP-1 receptor mediated insulin synthesis in 

the brain could be extended to the therapy of these diseases.  

The evidence for insulin synthesis in the brain raises the question whether brain derived 

insulin could be used for replacement of insulin in the periphery in type I diabetes mellitus. 

Insulin synthesized in the brain is unlikely to cross the blood-brain barrier in the brain to 

blood direction  in quantities required for euglycemic control of plasma glucose 

concentrations [5] and intranasal insulin delivery fails to increase plasma insulin levels 

significantly [45]. An alternative approach might use autologous grafts of insulin expressing 

neurons or neural progenitor cells as a potential replacement for lost pancreatic beta cells. 

Such neuron or neural stem cell based therapy of diabetes is suggested by spectacular results 

by Kuwabara et al. [37] raising the possibility that neural stem cells isolated from the adult 

brain can functionally replace beta cells in diabetic patients [65, 66]. The suggested workflow 

for autologous neural stem cell based therapy for diabetes is critically based on the 

observation that insulin expressing neural stem cells of the dentate gyrus or the olfactory bulb 



might find similar molecular niches for their survival and insulin expressing ability in the 

brain as well as in the pancreas involving Wnt3 and NeuroD [37, 66]. Neural stem cells can 

be isolated from rodent and human olfactory bulbs [37, 67] and rat cells can be transplanted 

directly into the pancreas of diabetic rats [37] where the pancreatic niche reprograms neuronal 

stem cells via Wnt signaling to express insulin. Isolating neural stem cells from streptozotocin 

induced type I diabetic or from type II diabetic Goto-Kakizaki rats followed by 

transplantation to the pancreas of animals of the corresponding model confirmed that grafted 

cells survive and produce insulin for long periods (>10 weeks) and dramatically reduce blood 

glucose levels [37]. The therapeutic potential of this study for human diabetic patients is 

immense because no genetic manipulation is necessary and the procedure bypasses 

tumorigenic pluripotent stem cells and concerns inherent to chronic immunosuppression.  
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