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Abstract Recent results suggest that insulin is synthesised by
a subpopulation of neurons in the cerebral cortex and neural
progenitor cells of the hippocampus. Supplementing the slow
supply of insulin to the brain by pancreatic beta cells, the
insulin locally released by neurons provides a rapid means
of regulating local microcircuits, effectively modulating syn-
aptic transmission and on-demand energy homeostasis of neu-
ral networks. Modulation of insulin production by brain neu-
rons via glucagon-like peptide 1 (GLP-1) agonists might be
useful in counteracting diabetes, obesity and neurodegenera-
tive diseases. Replacement of lost pancreatic beta cells by
autologous transplantation of insulin-producing neural pro-
genitor cells could be a viable therapy for diabetes.
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Introduction

Discovered almost a century ago [1], insulin is widely known for
its essential role in reducing blood glucose levels through the
stimulation of glucose uptake by muscle, liver and adipose tis-
sues. Pancreatic beta cells secrete insulin, a process that is crucial
for determining blood glucose levels. Beta cells detect extracel-
lular glucose concentrations through the glucose transporter
GLUT?2. Importantly, unlike the glucose transporters in insulin-
sensitive tissues (predominantly GLUT4), GLUT?2 is not regu-
lated by insulin, thus the drop in blood glucose level due to the
action of GLUT4 triggers a negative feedback mechanism sup-
pressing insulin secretion through GLUT2 positioned on beta
cells. Type 1 diabetes mellitus is a consequence of the partial or
complete loss of beta cells, which leads to impaired insulin se-
cretion and uncontrolled blood glucose levels (hypoinsulinaemic
hyperglycaemia). In type 2 diabetes, insulin levels are indirectly
disturbed. Insufficient insulin action on receptors in insulin-
sensitive tissues allows blood glucose levels to rise, leading to
enhanced insulin release by beta cells. This insulin release is
initially capable of restoring normal blood glucose concentrations
(hyperinsulinaemic euglycaemia). When beta cells reach their
maximal insulin-producing capacity and are no longer able to
maintain normal blood glucose, the state of hyperinsulinaemic
hyperglycaemia known as type 2 diabetes arises.

The function of insulin, however, is not restricted to periph-
eral organs. In the brain, the insulin-independent GLUT1 and
GLUT3 are predominantly responsible for glucose uptake in
glial cells and neurons, respectively [2]. Accordingly, brain
metabolism has been considered insulin independent for de-
cades, but the discovery of insulin receptors in the brain [3]
now indicates that the cerebral functions of insulin are more
complex. Insulin receptors expressed in the brain are similar to
those found in the periphery [4], with the highest expression
detected in the olfactory bulb, cerebral cortex, hippocampus,
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hypothalamus and cerebellum [3]. Insulin receptor levels are
higher in neurons than in glial cells [5]. Importantly, there are
similarities in the periphery and the brain in the major signal
transduction pathways linked to the insulin receptor. The
phosphoinositide-3 kinase (PI3)/Akt and Ras/mitogen-
activated protein kinase (MAPK) routes crucial to peripheral
glucose, lipid and protein metabolism [6] are also essential in
the mechanism of insulin action in the brain [4, 7].

This short paper reviews the classic ideas emphasising the
role of pancreatic insulin in the central nervous system [8],
shares the conclusion of excellent recent reviews [9-11] by
arguing that local insulin synthesis in the brain is significant
and finally presents potential therapies targeted to or based on
insulin synthesised by neurons or their progenitors.

External insulin reaches the brain

As outlined above, a normal supply of insulin in the brain
appears to be crucial for neural function, including metabo-
lism, and, consequently, dynamic or persistent alterations in
insulin-dependent mechanisms could contribute to pathologi-
cal processes. The sources of insulin found in the brain are not
completely clear. It is generally accepted that insulin synthe-
sised by pancreatic beta cells is delivered to the brain [8,
12—16], but an accurate picture of this process is missing
(Fig. 1) [10]. Pancreatic insulin circulating in the plasma has
two ways into the interstitial fluid immediately surrounding
neurons and glial cells of the brain.

The first pathway delivers relatively small amounts of plas-
ma insulin through the choroid plexus to the cerebrospinal
fluid. Plasma concentrations of insulin are an order of magni-
tude higher compared with those measured in the cerebrospi-
nal fluid [17, 18]. Interestingly, this difference is increased in
obesity [19], despite the higher plasma insulin concentrations
in obese individuals. This process is saturable [16, 20], but it is
not clear whether saturation is caused by the potential involve-
ment of insulin receptors of the choroid plexus or by the
suspected contribution of megalin, a transporter known to
mediate leptin transport across the choroid plexus and to be

involved in insulin transport [21] in the epithelial cells of renal
tubules [22].

The second pathway takes insulin from plasma into the en-
dothelial cells of the brain microvasculature. Based on experi-
ments showing that aortic endothelial cells outside the brain are
able to concentrate insulin [23], the second pathway is
hypothesised to transport the bulk of peripheral insulin to the
brain. Mechanisms of transendothelial insulin transport in the
brain have not been directly studied to date, but one can spec-
ulate that a vesicular trafficking process, beginning with insulin
binding to its receptor followed by the involvement of caveolae
and promoted by NO signalling [23-26], could be involved
according to experiments with peripheral endothelia. The two
pathways join at the Virchow—Robin space surrounded by en-
dothelial cells, astrocytic endfeet and pericytes. Peripheral in-
sulin then passes the line of astrocytic endfeet, an effective filter
and limiter of movement speed for larger molecules [27], be-
fore reaching the interstitial space around neurons and glia.
Absolute insulin concentrations are difficult to measure reli-
ably in the interstitial space of the brain, but the relative
changes detected in response to food intake were independent
of plasma insulin concentration [28, 29], raising the possibil-
ity that pancreas-independent local insulin synthesis occurs in
the brain [13].

The speed of pancreatic insulin transport into the cerebro-
spinal fluid and then to the interstitial space of the brain is
orders of magnitude slower than the operating speed of neural
networks estimated according to the lowest frequency of brain
oscillations. Insulin levels in the cerebrospinal fluid remain
below fasting levels in response to several hours of peripheral
hyperinsulinaemic euglycaemic clamping [18, 20] and, more-
over, fasting insulin levels in the cerebrospinal fluid (~7 pmol/l)
[30] are insufficient for signal transduction through insulin re-
ceptors. Even if insulin concentrations in the cerebrospinal fluid
are elevated to effective levels, it is estimated that the slow
circulation of cerebrospinal fluid limits insulin delivery to the
interstitial space of the brain at a rate of ~1/600 of that to
skeletal muscle and at <1/30,000 of that to the liver [10].
Alternatively, insulin might move directly from the plasma
through the blood-brain barrier to the Virchow—Robin space
and the interstitial fluid. Studies examining the involvement of

Fig. 1 Potential central actions of
insulin. The box represents the
blood-brain barrier
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this route measured the tissue content of radiolabelled insulin in
brain regions [31], which did not allow the insulin concentra-
tion in the interstitial fluid to be determined. To date, estima-
tions of the speed by which insulin moves across the blood—
brain barrier are limited by brain microvessels binding insulin
with high affinity without significant insulin degradation [32].
Nevertheless, insulin finds its way from the plasma to the im-
mediate vicinity of neurons, but equilibration with the intersti-
tial space in the brain is achieved at timescales consistent with
long-term homeostatic regulation outside the frequency range
(~0.1-200 Hz) of changes in membrane potential in neural
networks.

The limited speed by which external insulin is distributed is
also a factor to consider when delivering insulin to the brain
intranasally [30]. This process has gained particular relevance
following encouraging reports [33] and clinical trials [34] that
provide evidence for cognitive improvements with daily intra-
nasal insulin administration in patients with mild cognitive
impairment or mild to moderate Alzheimer’s disease. Levels
of insulin are reduced in Alzheimer’s disease [35, 36], and
intranasally applied insulin raises concentrations in the cere-
brospinal fluid within 10 min of application, with maximal
levels achieved after 30 min, while plasma insulin and glucose
levels remain unaffected [30]. How intranasal insulin reaches
the brain remains mechanistically unclear [37], but the
process can be stimulated by inhibiting protein kinase C
[38]. A different strategy for increasing insulin concentra-
tions in key areas affected by Alzheimer’s disease, such as
the hippocampus and neocortex, would be to boost insulin
release from neurons or neuronal progenitors expressing
insulin locally.

Local insulin synthesis in the brain

Whether insulin is produced locally in the central nervous
system is not a trivial question to answer. Initial studies on
the subject suggested that immunoreactive insulin is present in
the rat brain in concentrations 10 to 100 times higher than in
the plasma [39], but this was challenged by subsequent find-
ings [40], leading to the conclusion that ‘little or no insulin is
produced in [the] brain’ [41]. The heart of the problem is that
experiments must be able to differentiate between insulin of
pancreatic origin and insulin synthesised locally. Anti-insulin
antibodies recognise the same epitopes on pancreas- and
brain-derived insulin, thus methods such as anti-insulin im-
munocytochemistry or radioimmunoassay capable of detect-
ing insulin in small amounts are not adequate. Increasing the
resolution to allow cellular or subcellular localisation of anti-
insulin immunoreaction signals is of little help as receptor-
bound and internalised insulin pools are degraded or recycled
to the plasma membrane at intracellular locations that poten-
tially overlap with those of locally synthesised peptide [42].

Immunoreactions detecting peptides involved in the different
steps of insulin synthesis might overcome these limitations.
Indeed, C-peptide, an integral part of proinsulin, was localised
to the same neurons as insulin [43—45], and proinsulin-like
immunoreactivity was documented in samples derived from
the central nervous system [46], arguing for local synthesis in
the brain.

Another strategy for detecting insulin production in the
brain is to search for the mRNA of insulin-coding genes:
Insl and Ins2 in mice; Ins2 in rat; and INS in humans. A
pioneering RT-PCR study detected widespread Ins2 expres-
sion in the rat brain throughout development [47] and the
same laboratory confirmed it in rabbit, showing Ins2 expres-
sion in neurons of the hippocampus and olfactory bulb [48].
More recently, hippocampal granule cells from adult rats and
neuronal progenitor cells derived from the hippocampus or
olfactory bulb were also found to express insulin mRNAs
[45]. Furthermore, expression of Ins2, but not /ns 1, was found
in cortical and subcortical areas of the mouse brain [49, 50]
and /NS mRNA expression characterised human samples of
the hippocampus, amygdala and temporal lobe in addition to
the olfactory bulb, cerebellar and pontine regions [50].
Recently developed methods to precisely quantify mRNA
copy numbers in single neurons [51] have provided an effec-
tive tool for determining /ns2 levels in several rat neuron types
and astrocytes in the rat cerebral cortex [52]. Interestingly, a
subset of inhibitory GABAergic neurons, the so-called
neurogliaform interneurons, expressed /ns2 mRNA at the
highest copy numbers tested, excitatory pyramidal neurons
contained /ns2 mRNA at low copy numbers, and other
GABAergic neurons and astroglial cells did not express Ins2
mRNA above the threshold of detection [52]. Importantly, the
authors found that mRNA copy number was selectively in-
creased in response to increasing extracellular glucose con-
centrations in the cell types expressing Ins2 [52], suggesting
that neuronal production of insulin could be associated with
local metabolic supply and functional demand, especially in
neocortical and hippocampal areas of the cerebral cortex.

The first experiments showing local release of insulin in the
cerebral cortex followed classic ideas of mimicking the effect
of externally added compounds with endogenously released
substances. In this case, Molnar et al [52] first determined that
external insulin is effective in suppressing spontaneous excit-
atory potentials arriving at neurons of the neocortex, then, using
local delivery of glucose or glibenclamide to neurogliaform
interneurons (known to express /ns2 mRNA, see above),
forced the release of an endogenous substance that also sup-
pressed spontaneous excitatory potentials. Finally, they
blocked this effect with the specific insulin receptor antagonist
S961, revealing the identity of the endogenous substance as
insulin. Thus, insulin can be released from a subpopulation of
inhibitory neurons of the cerebral cortex and has an excitation-
suppressing effect in local neural microcircuits.
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Insulin action in the brain

Given the parallel expression of insulin-activated PI3/Akt and
Ras/MAPK pathways in the periphery and the brain, a logical
question is whether insulin-mediated effects on neurons in-
volve metabolic regulation. Insulin receptors and the insulin-
sensitive glucose transporter GLUT4 have been shown to co-
localise on neurons [53], and cellular mechanisms supporting
neuronal metabolic functions of insulin involve translocation
of GLUTH4 to the cell surface [54], so providing an alternative
to insulin-independent glucose uptake through GLUT3. The
insulin dependence of brain metabolism at the neural network
level has also been revisited by a number of human in vivo
studies [55-57], which suggest that insulin can effectively
stimulate glucose uptake in the medial temporal lobe, espe-
cially during periods of intensive neuronal activity [58].
Moreover, a rapid increase in local glycolysis following insu-
lin administration was found in the hippocampus and was
suppressed in type 2 diabetes [59]. However, glucose levels
drop significantly in the extracellular space during intense
cognitive operations and might not be rate-limiting for the
metabolic supply of microcircuits because of astrocytic meta-
bolic routes [11]. A consensus on neuronal glucose metabo-
lism in relation to insulin is of particular interest for two rea-
sons. First, neuronal ensembles in the hippocampus and the
neocortex are engaged in increased high-frequency epochs of
firing during memory formation or cognitive tasks and the
extra metabolic demand created by intensive action potential
generation might be met by alternative routes of supply. An
unorthodox pathway of glucose supply during cognitive
surges in energy demand was suggested by Emmanuel et al
[58], who proposed that non-insulin-dependent GLUT1 and
GLUTS3 transport is sufficient for resting brain activity, while
sustained cognitive activity induces the addition of insulin-
signalled GLUT4 transport. Second, unlike in other organs,
glucose is central for the energy metabolism of the brain and
temporary or sustained changes in glucose supply could be
crucial in differentiating the normal and pathological func-
tions of neural circuits. Cognitive deficits are associated with
insulin resistance and diabetes [60, 61] and impaired insulin-
dependent mechanisms for glucose uptake during tasks requir-
ing extra supply might lead to deficient energy metabolism
[58]. Along the same vein, ‘type 3 diabetes’ was suggested
as an alternative term for Alzheimer’s disease [35], based on
observations showing reduced insulin expression and signal-
ling mechanisms in the sporadic form of the disease [62].

In addition to the involvement in neuronal metabolism, the
classic PI3/Akt and Ras/MAPK insulin-activated pathways are
also important in neuron-specific cellular functions, such as the
development of neuronal dendritic arbors [63] and the mainte-
nance of excitatory synapses [64, 65]. These functions are crucial
in regulating cellular processes of learning and memory and lead
to long-term potentiation (LTP) or long-term depression (LTD)
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of synaptic efficacy through the removal of «-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) receptors from
postsynaptic specialisations for LTD [64, 65] and through
shifting the stimulation frequency—response function for LTP
[66]. Corroborating these results, a deficit of LTP is observed
in models of type 1 diabetes, but results from experiments using
type 2 diabetes model systems are not unequivocal [54]. Insulin
is instrumental in modulating inhibitory mechanisms by moving
additional 'y-aminobutyric acid (GABA) receptors to inhibitory
synapses [67] and extrasynaptic regions of the plasma membrane
[68], providing mechanisms synergistic with the LTD induction
detailed above for shifting the balance away from excitation in
neural networks.

Neurogliaform interneurons, capable of releasing insulin in
cortical microcircuits [52], are also GABAergic [69] and use
GABA for volume transmission of widespread inhibition [70],
thus these cells are ideally suited to synchronise the local ac-
tions of insulin and GABA. It is not yet known which combi-
nation of neural afferents elicit insulin release from
neurogliaform cells. However, it is reasonable to assume that
strong excitatory inputs might contribute to the intracellular
Ca®" accumulation required for peptide release. One can spec-
ulate that insulin release could be synchronised to elevated
overall activity in networks around neurogliaform neurons.
This way transient local energy demand could be met by insulin
release-driven additional glucose transport through insulin-
dependent GLUT4, as suggested for epochs of intense hippo-
campal or cortical activity during cognitive processing [58]. At
the same time, the overall excitation-suppressing activity of
insulin released from neurogliaform cells is likely to be coupled
with the synchronous release and inhibitory action of GABA
from neurogliaform cells, which might curtail energy demand.

At the neuronal network level, insulin is an effective
neuromodulatory peptide with an array of effects including con-
trol of food intake and body weight, regulation of the reproduc-
tive or hypothalamic—pituitary—gonadal axis, influencing neuro-
nal survival and modulation of memory and cognitive processes
[8, 12—14]. Apart from the classic cellular signalling pathways,
insulin also acts through alternative mechanisms in neurons.
Insulin directly opens neuronal ATP-gated potassium (Karp)
channels, resulting in suppressed firing [71], and this signalling
route was suggested as a mechanism for modulating hippocam-
pal memory performance [72]. Moreover, the action of insulin
on neurons might interact with glucocorticoid signalling through
opposite modulation of hippocampal GLUT4 [73] and by addi-
tional mechanisms expertly reviewed previously [11, 54].

Neuron-derived insulin-based therapy
The effect of glibenclamide in triggering neuronal release of

insulin [52] also suggests that the delivery of substances known
to enhance insulin release from pancreatic beta cells to the brain
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might have therapeutic implications. An as-yet untested strate-
gy for increasing insulin concentrations in key areas affected by
Alzheimer’s disease, such as the hippocampus and neocortex,
would be to boost insulin release from neurons or neuronal
progenitors expressing insulin locally. Apart from sulfonyl-
ureas, incretins might represent a promising group of molecules
to be tested for several reasons. Glucagon-like peptide 1 (GLP-
1) receptors are expressed in neurons of the hippocampus and
the neocortex [74], although the expression of GLP-1 receptors
has not been documented on insulin-expressing neurons or
neural progenitor cells. Interestingly, however, GLP-1 agonists
have effects on tonic inhibitory GABAergic currents similar to
those reported for insulin, arguing for a hypothetical contribu-
tion of GLP-1 receptor-mediated insulin release [68, 75]. GLP-
1 is produced in the brainstem [76], suggesting that centrally
synthesised GLP-1 could be effective within the brain via the
mechanisms outlined above. However, GLP-1 produced by L-
cells of the intestine crosses the blood—brain barrier [76] and
thus incretins arriving from the periphery can possibly enhance
insulin release from neurons in the brain. Importantly, these
peripheral incretins include GLP-1 analogues prescribed in
type 2 diabetes mellitus. We suggest that the weight loss caused
by GLP-1 receptor analogue-based therapy (attributed primarily
to the inhibition of gastric emptying [77]) might have an addi-
tional synergistic component through GLP-1 receptor-mediated
insulin release from neurons of the brain. Human imaging stud-
ies suggest that the prefrontal cortex is crucial in the inhibitory
control of food intake [78-80] and, hypothetically, expression of
GLP-1 receptors on insulin-releasing neurogliaform neurons of
the prefrontal cortex could provide mechanistic support for this
process. Moreover, GLP-1 receptor agonists promise therapeutic
effectiveness against neurodegeneration in models of
Alzheimer’s, Huntington’s and Parkinson’s diseases [81, 82]
and a scenario of GLP-1 receptor-mediated insulin synthesis in
the brain could be extended to therapy for these diseases.

The evidence for insulin synthesis in the brain raises the ques-
tion of whether brain-derived insulin could be used to replace
peripheral insulin in type 1 diabetes. Insulin synthesised in the
brain is unlikely to cross the blood—brain barrier in the brain-to-
blood direction in the quantity required for euglycaemic control
of plasma glucose concentrations [8]; intranasal insulin delivery
fails to increase plasma insulin levels significantly [30]. An al-
ternative approach might use autologous grafts of insulin-
expressing neurons or neural progenitor cells as a potential re-
placement for lost pancreatic beta cells. Such neuron- or neural
stem cell-based therapy of diabetes is suggested following the
spectacular results of Kuwabara et al [45] that raised the possi-
bility of neural stem cells isolated from the adult brain function-
ally replacing beta cells in diabetic patients [83, 84]. The sug-
gested workflow for autologous neural stem cell-based therapy
for diabetes is, critically, based on the suggestion that insulin-
expressing neural stem cells of the dentate gyrus or the olfactory
bulb might find similar molecular niches for their survival and

insulin-expressing ability in the brain as well as in the pancreas,
and that this might involve Wnt3 and neurogenic differentiation
1 (NeuroD) [45, 84]. Neural stem cells can be isolated from
rodent and human olfactory bulbs [45, 85] and rat cells can be
transplanted directly into the pancreas of diabetic rats [45], where
the pancreatic niche reprograms neuronal stem cells via Wnt
signalling to express insulin. Isolating neural stem cells from
models of type 1 diabetes (induced by streptozotocin in rats) or
type 2 diabetes (in Goto—Kakizaki rats) followed by transplan-
tation to the pancreas of animals of the corresponding model
confirmed that grafted cells survive and produce insulin for long
periods (>10 weeks) and dramatically reduce blood glucose
levels [45]. The therapeutic potential for human diabetic patients
is immense because no genetic manipulation is necessary and the
procedure bypasses tumorigenic pluripotent stem cells and con-
cerns inherent to chronic immunosuppression.

Summary and conclusion

The action of insulin is not restricted to peripheral organs.
Insulin receptors and signal transduction pathways described
in the periphery are involved in a wide array of functions in the
central nervous system. It is generally accepted that insulin
produced by pancreatic beta cells in physiological conditions
or applied intranasally with a therapeutic purpose for mild to
moderate Alzheimer’s disease finds its way to neurons of the
cerebral cortex. The timescale of external insulin transport to
the vicinity of neurons is relatively slow, consistent with long-
term homeostatic regulation of neural networks. Recent work
has overwhelmingly shown that insulin is also synthesised lo-
cally in the cerebral cortex. Neuron-derived insulin is capable
of rapid modulation of synaptic and microcircuit mechanisms
and is suggested to regulate on-demand energy homeostasis of
neural networks. We suggest that novel therapeutic strategies
might include modulation of neural insulin production in the
brain by GLP-1 agonists for counteracting diabetes, obesity and
neurodegenerative diseases. Recent experiments in which lost
pancreatic beta cells were replaced by autologous transplants of
insulin-producing neural progenitor cells signal the immense
therapeutic potential of this approach for diabetes.
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