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ON THE DIMINISHING PROCESS OF BÁLINT TÓTH

PÉTER KEVEI AND VIKTOR VÍGH

Abstract. Let K and K0 be convex bodies in Rd, such that K contains the

origin, and define the process (Kn, pn), n ≥ 0, as follows: let pn+1 be a

uniform random point in Kn, and set Kn+1 = Kn ∩ (pn+1 + K). Clearly,
(Kn) is a nested sequence of convex bodies which converge to a non-empty

limit object, again a convex body in Rd. We study this process for K being a

regular simplex, a cube, or a regular convex polygon with an odd number of
vertices. We also derive some new results in one dimension for non-uniform

distributions.

1. Introduction

The following problem was formulated by Bálint Tóth some 20 years ago with
K = K0 being the unit disc of the plane. Let K and K0 be convex bodies in Rd,
such that K contains the origin, and define the process (Kn, pn), n ≥ 0, as follows:
let pn+1 be a uniform random point in Kn, and set Kn+1 = Kn ∩ (pn+1 + K).
Clearly, (Kn) is a nested sequence of convex bodies which converge to a non-empty
limit object, again a convex body in Rd. What can we say about the distribution
of this limit body? What can we say about the speed of the process? In Figure 1
one can see the evolution of the process up to n = 10 on the right, and K10 on the
left, when K = K0 is a regular heptagon.

In [1] Ambrus, Kevei and Vı́gh investigated the process in 1 dimension, when
K = K0 = [−1, 1]. In this case the limit object is a random unit interval, whose
center has the arcsine distribution (see Theorem 1 in [1]). So even in the simplest
case the process has very interesting features. Moreover, in Theorem 2 in [1] it is
shown that if rn is the radius of the interval Kn, then 4n(rn − 1/2) converges in
distribution to a standard exponential random variable. The idea of the proof is to
observe that (rn − 1/2) behaves as the minimum of iid random variables, and thus
obtain the limit theorem via extreme value theory.

We also would like to point out the formal relationship between the diminishing
process and the so called Rényi’s Parking Problem from 1958 [9]. Rényi studied the
following random process: consider an interval I of length x >> 1, and sequentially
and randomly pack (non-overlapping) unit intervals into I. In each step we choose
the center of the next unit interval uniformly from the possible space. The process
stops when there is no space for placing a new unit interval. (Intuitively I is the
parking lot and the unit intervals are the cars.) The first possible question is to
determine the expectation M(x) of the covered space. Many other variants of this
problem have been studied for over 50 years, for an up-to-date state of the art we

Received by the editors November 18, 2014.
2010 Mathematics Subject Classification. Primary 60D05, Secondary 52A22, 60G99.

c©XXXX American Mathematical Society

1
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Figure 1. The evolution of the process for K = K0 being a
regular heptagon

refer to Clay and Simányi [5]. The connection between the diminishing process and
Rényi’s Parking Problem can be seen easily as follows: if we choose in the definition
of the diminishing process K0 = I, and we drop the conditions we put on K, and
define K as the complement of the closed interval of length 2 centered at 0, then
we get exactly Rényi’s Parking Problem.

In the present paper we analyze the diminishing process in more general cases.
In Section 2 we consider the case, when instead of choosing pn+1 uniformly in
the interval, we choose it according to a translated and scaled version of a fixed
distribution F . Again, the limit object is a random unit interval. In Theorem
2.4 we determine the asymptotic behavior of the speed, while in Theorem 2.5 we
show that for appropriate choice of F the distribution of the center has the beta
law. In Sections 3 and 4 we consider the case when K = K0 is a cube and a
regular d-dimensional simplex, respectively. The cube process can be represented
as d independent interval processes, thus the results in Section 3 follow from the
corresponding results in [1]. In the case of the simplex process, the limit object
is also a random regular simplex. The main result of this part is that the center
of the limit simplex in barycentric coordinates has multidimensional Dirichlet law,
which is a natural generalization of the beta laws to any dimension. The rate of
the process is also determined. The processes considered this far are ‘self-similar’
in the sense that at each step the process is a scaled and translated version of the
original one.

In Sections 5, 6 and 7 we consider diminishing processes in the plane. In case
of the pentagon process even the shape of the limiting object is random. We prove
that it is a pentagon with equal angles, however it is not regular a.s. This process
is not ‘self-similar’, and its behavior is more complicated. We determine the rate
of the convergence of the maximal height, but as the area of the limit object is
random, limit theorem with deterministic normalization is not possible. Also the
behavior of the center of mass is intractable with our methods. Finally, in Section 7
we consider regular polygons with odd number of vertices, i.e. K = K0 is a regular
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polygon. Using the theory of stochastic orderings for random vectors we prove that
the rate of the speed is n−1/2. We conjecture that in the case, when the number of
vertices is even the speed of the process is n−1. This is established in case of the
square, but in general it is open.

2. One dimension, general density

In this section we consider the process in the interval [−1, 1], and the random
point is chosen according to a not necessarily uniform distribution.

Fix a distribution on [0, 1] with distribution function F , and in each step we
choose the random point according to this distribution. That is, if the center and
radius is (Zn, rn) the random point pn+1 is given by 2rnXn+1+Zn−rn, where Xn+1

is independent of Zn, rn, and has distribution function F . The initial condition is
(Z0, r0) = (0, 1), i.e. we start from the interval [−1, 1].

Let X,X1, X2, . . . be iid random variables with distribution function F . It is
easy to see that for n ≥ 0

(2.1) rn+1 =

{
1
2 + rn min{Xn+1, 1−Xn+1}, min{Xn+1, 1−Xn+1} ≤ 1− 1

2rn
,

rn, otherwise.

To simplify the recursions above we have to pose some assumptions on F . The
following lemmas contain these assumptions. To determine the rapidness of the
process we only need part (i), while for the limit distribution of the center we need
both parts. In fact, in both cases we only need the ‘if’ part. In the following, the
distribution of the random variable X is denoted by L(X), and given an event A
the conditional distribution of X given A is L(X|A).

For α > 0, β > 0 the random variable X has the beta(α, β) law, if its density
is xα−1(1 − x)β−1B(α, β)−1, x ∈ (0, 1), where B(x, y) = Γ(x)Γ(y)/Γ(x + y) is the
usual Beta function, with Γ( · ) being the Gamma function.

Lemma 2.1. Let X be a random variable with distribution function F , such that
P{X ∈ [0, 1]} = 1.

(i) For all a ∈ [0, 1], for which P{X ≤ a} > 0, the distributional equality

L(X|X ≤ a) = L(aX)

holds, if and only if either X is a degenerate random variable at 0 or at 1,
or L(X) = beta(δ, 1), for some δ > 0.

(ii) The random variables I(X ≤ 1/2) and max{X, 1 −X} are independent if
and only if F (1/2) = 0, or F (1/2) = 1, or

F (x) = 1− 1− F (1/2)

F (1/2)
F (1− x−)

for all x ∈ [1/2, 1].

Note that part (i) of the lemma is a characterization of the beta(δ, 1) law. This
characterization might be known however, we were unable to find a reference. The
simple proof of Lemma 2.1 is given in the Appendix.

As an immediate consequence we obtain the following.

Lemma 2.2. Let Y be a random variable in [0, 1] with continuous distribution
function F . Then for any a ∈ (0, 1) the distributional equality

L (2 min{Y, 1− Y }|2 min{Y, 1− Y } ≤ a) = L(2a min{Y, 1− Y })
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holds, and I(Y ≤ 1/2) and max{Y, 1− Y } are independent if and only if

(2.2) F (x) =

{
c2δxδ, x ∈ [0, 1/2],
1− (1− c)2δ(1− x)δ, x ∈ [1/2, 1],

for some c ∈ [0, 1] and δ > 0.

During the analysis of diminishing processes we frequently end up with a recur-
sion of the following type.

Let V, V1, . . . be a sequence of independent beta(δ, 1) random variables for some
δ > 0, and let (an) be a sequence of bounded nonnegative random variables, such
that an ↓ a, a.s., where a > 0 is deterministic. Assume that `0 = 1, and for n ≥ 0,
for some c > 0

(2.3) `n+1 =

{
`nVn+1, w.p. c

`δn
an
,

`n, w.p. 1− c `
δ
n

an
,

where c
`δn
an
∈ [0, 1] and the abbreviation w.p. stands for ‘with probability’.

To be precise this means throughout the paper the following. On our probability
space (Ω,A,P) there is a filtration (Fn)n≥0. The filtration is usually generated by
the random points pn, i.e. Fn = σ(p1, . . . , pn). The random variables an and `n are
Fn measurable, and almost surely an ↓ a > 0. Conditionally on an and `n let ωn+1

be a Bernoulli(c
`δn
an

) random variable and independently Vn+1 is a beta(δ, 1) random

variable. Then `n+1 = `nVn+1 whenever ωn+1 = 1, and `n+1 = `n otherwise. (Here
and in the following section an is simply a function of `n. However, when dealing
with the polygon process an is the area of Kn, and it does depend on the chosen
points, and not only on `n. This is the reason of the complication.)

In the next lemma we determine the asymptotic behavior of such `n sequences.
The idea of the proof is to show that `n behaves like the minimum of n iid random
variables, as in the proof of Theorem 1 in [1]. The proof is deferred to the Appendix.

For δ > 0, the Weibull(δ) distribution function is given by 1 − e−x
δ

, for x > 0,
and 0 otherwise.

Lemma 2.3. Assume that `n is defined by (2.3). Then( c
a
n
)1/δ

`n
D−→Weibull(δ).

Moreover, for any α > 0

lim
n→∞

E
( c
a
n
)α/δ

`αn = Γ
(

1 +
α

δ

)
.

With the help of these lemmas we can analyze the speed of the process.

Theorem 2.4. Assume that for the distribution of X we have

P{2 min{X, 1−X} ≤ x} = xδ, x ∈ [0, 1],

for some δ > 0. Then as n→∞

4n1/δ

(
rn −

1

2

)
D−→Weibull(δ),

i.e. for any x > 0

lim
n→∞

P

{
4n1/δ

(
rn −

1

2

)
> x

}
= e−x

δ

.
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Moreover, for any α > 0

lim
n→∞

E 4αnα/δ
(
rn −

1

2

)α
= Γ

(
1 +

α

δ

)
.

Proof. Using the assumption and Lemma 2.1 (i) we see that (2.1) can be rewritten
as

(2.4) `n+1 =

{
`nVn+1, w.p. (2− r−1

n )δ,
`n, w.p. 1− (2− r−1

n )δ,

with `n = rn−1/2, and V, V1, . . . are independent beta(δ, 1) random variables. Now
the theorem follows from Lemma 2.3, with an = rδn ↓ 1/2δ = a and c = 2δ. �

To determine the limit distribution of the center consider the thinned process

(Z̃n, r̃n), which is obtained from the original process (Zn, rn) by dropping those
steps when nothing changes, i.e. when rn = rn+1. Clearly, the limit of the center
is not affected. After some calculation we obtain the recursion

Z̃n+1 = Z̃n +
2r̃n max{Xn+1, 1−Xn+1} − 1

2
sgn (Xn+1 − 1/2),

r̃n+1 =
1

2
+ r̃n min{Xn+1, 1−Xn+1},

(2.5)

where Xn+1 has the distribution of X conditioned on the event min{X, 1 −X} <
1− (2r̃n)−1.

Note that in (2.2) in Lemma 2.2 for c = 1 the distribution is concentrated on
[0, 1/2], in which case the center always moves towards −1/2, so the limit dis-
tribution of the center is degenerate at −1/2. Similarly, for c = 0 the limit is
deterministic 1/2. In the following theorem we exclude these cases.

Theorem 2.5. Let us assume that for some c ∈ (0, 1) and δ > 0 (2.2) holds. Then
the distribution of Z is the translated beta(δ(1− c), δc) law, i.e. its density function
is

fδ,c(x) =
Γ(δ)

Γ(δ(1− c))Γ(δc)
(1/2 + x)δ(1−c)−1(1/2− x)δc−1, x ∈ (−1/2, 1/2).

In the symmetric case, when c = 1/2, we obtain the so-called power semicircle
laws. For further properties of power semicircle distributions and for their role in
non-commutative probability, we refer to Arizmendi and Pérez-Abreu [2].

Proof. By Lemma 2.1 and (2.5) we obtain the recursion

Z̃n+1 = Z̃n + ξn+1
˜̀
n(1− Vn+1),˜̀

n+1 = ˜̀
nVn+1,

(2.6)

where ˜̀n = r̃n − 1/2, and ξ1, ξ2, . . . are iid Bernoulli random variables, such that
P{ξ1 = 1} = 1 − c = 1 − P{ξ1 = −1}, and independently of {ξi}∞i=1, the random

variables V1, V2, . . . are iid beta(δ, 1). The initial value is (Z̃0, ˜̀0) = (0, 1/2).
Formula (2.6) implies the infinite series representation of the limit

(2.7) Z∞ =
1

2

∞∑
i=1

ξiV1 . . . Vi−1(1− Vi),
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and thus the distributional equation perpetuity

(2.8) Z∞
D
=

1

2
ξ1(1− V1) + V1Z∞,

where on the right-hand side V1, ξ1, Z∞ are independent.
Corollary 1.2 in Hitczenko and Letac [8] (or the proof of Theorem 3.4 in Sethu-

raman [10]) implies that Z∞ + 1/2 has the beta(δ(1− c), δc) distribution. �

Note that once we have the infinite series representation (2.7) the proof can be
finished using the properties of GEM(δ) (or Poisson–Dirichlet) law; see Hirth [7],
or Bertoin [3, Section 2.2.5].

Distributional equations of type

R
D
= Q+MR, R independent of (Q,M),

where R,Q are random vectors, and M is a random variable, are called perpetuities.
Equation (2.8) is an example. Necessary and sufficient conditions for the existence
of a unique solution of one-dimensional perpetuities are given by Goldie and Maller
[6]. However, in special cases (for example for M ∈ [−1, 1]) the existence of a unique
solution in any dimension was known earlier, see Lemma 3.3 by Sethuraman [10].
Therefore, in (2.8) above, or in d dimension in (4.4) below, the assertion that
certain distribution G satisfies the perpetuity equation is equivalent to saying that
the perpetuity equation has a unique solution G.

The perpetuities (2.8) and (4.4) are interesting in their own right, because there
are relatively few perpetuities when the exact solution is known. The results of
Sethuraman [10] (proof of Theorem 3.4; see also Theorem 1.1 in [8]) cover those
equations which appear in our investigations. For more general perpetuity equations
with exact solutions we refer to the recent paper by Hitczenko and Letac [8].

3. The cube

We consider the d-dimensional cube process, where K = K0 = [−1, 1]d. Now the
limiting convex body is a unit cube. Let us denote by m1(n), . . . ,md(n) the edge
lengths of the rectangular box Kn, and (Z1(n), . . . , Zd(n)) the center of Kn.

We generalize the results obtained in Section 2 into higher dimensions, to do
this, we consider scaled product measures. More precisely, we pick some positive
real numbers δ1, δ2, . . . , δd, and real numbers c1, c2, . . . , cd such that ci ∈ (0, 1) for
all i = 1, . . . , d. As in (2.2), we define for all i = 1, . . . , d the distribution functions

Fi(x) =

{
ci2

δixδi , x ∈ [0, 1/2],
1− (1− ci)2δi(1− x)δi , x ∈ [1/2, 1].

We introduce the joint distribution function

(3.1) F (x1, . . . , xd) =

d∏
i=1

Fi(xi).

Now, the random point pn+1, n ≥ 0, is given by

pn+1 = (m1(n)X1(n+ 1), . . . ,md(n)Xd(n+ 1)) + (Z1(n), . . . , Zd(n))

− 1

2
(m1(n), . . . ,md(n)),
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where {X(n + 1) = (X1(n + 1), . . . , Xd(n + 1))}n≥0 are iid random vectors with
distribution function F in (3.1). The initial conditions are (Z1(0), . . . , Zd(0)) =
(0, . . . , 0) and (m1(0), . . . ,md(0)) = (2, . . . , 2).

The following theorem readily follows using the results in Section 2.

Theorem 3.1. For the speed of the cube process we have

2

n
1/δ1(m1(n)− 1)

...
n1/δd(md(n)− 1)

 D−→

W1

...
Wd

 ,

where W1, . . . ,Wd are independent Weibull random variables with parameters δ1,
. . ., δd, respectively.

For the limit distribution of the centerZ1(n)
...

Zd(n)

 D−→

Z1

...
Zd

 ,

where Z1, . . . , Zd are independent, and for all i = 1, . . . , d, Zi is the translated
beta(δi(1− ci), δici) law, i.e. its density function is

fδi,ci(x) =
Γ(δi)

Γ(δi(1− ci))Γ(δici)
(1/2+x)δi(1−ci)−1(1/2−x)δici−1, x ∈ (−1/2, 1/2).

We note that if δ1 = δ2 = . . . = δd = 1 and c1 = c2 = . . . = cd = 1/2 then in each
step the point pn+1 is chosen from Kn according to the uniform distribution. In this
special case for the maximum of the edge lengths mn = max{m1(n), . . . ,md(n)} it
follows that

2n(mn − 1)
D−→W,

where P{W ≤ x} = (1− e−x)d, x ≥ 0.

4. The simplex

Now we turn to the simplex process in any dimension.
Let K be a regular d-dimensional simplex with centroid (0, 0, . . . , 0) and vertices

(e0, e1, . . . , ed), such that e0 = (1, 0, . . . , 0). Let us denote by ρd = 1/d the radius of
the inscribed sphere of K.

Let the initial simplex be K0 = 2
d+1K (for reasons explained below), and for Kn

given, choose a random point pn+1 uniformly inKn and letKn+1 = Kn∩(pn+1+K).
Let mn denote the height of Kn. Then Kn is a nested sequence of regular simplices
and the limit object is a regular simplex with height ρd.

It turns out that this process can be investigated by the same methods as for
d = 1, in case of the segment process, in [1]. The idea is that for the simplex in any
dimension the process is ‘self-similar’, i.e. after each step the process is a translated
and scaled version of the original one.

4.1. The rapidness of the process. If in the (n+ 1)th step the point pn+1 falls
close to the center, then nothing happens, i.e. Kn+1 = Kn. The ‘change regions’
are d + 1 congruent, regular simplices of height mn − ρd, each of them sits at a
vertex of Kn. Note that since the height of Kn is at most 2ρd these simplices are
disjoint, so the process is simpler. This is the reason we assume K0 = 2

d+1K, since
its height m0 = 2ρd. Although, if we would start with a larger K0, as mn ↓ ρd a.s.,
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mn − ρ2

ρ2

(mn − ρ2)hn+1

Kn

pn+1

Figure 2. The triangle process

in a random number of steps the height of Kn would be smaller than 2ρd, thus the
assumption K0 = 2

d+1K has no effect on the rapidness of the process.

Theorem 4.1. For the height process mn

(d+ 1)1/d

ρd
n1/d(mn − ρd)

D−→Weibull(d).

Moreover, for any α > 0

lim
n→∞

E
[(d+ 1)n]α/d

ραd
(mn − ρd)α = Γ

(
1 +

α

d

)
.

Proof. With disjoint change regions for the height process we have

mn+1 =

mn − hn+1 (mn − ρd) , w.p. (d+ 1)
(

1− ρd
mn

)d
,

mn, w.p. 1− (d+ 1)
(

1− ρd
mn

)d
,

where h1, h2, . . . are independent beta(1, d) random variables, which is the distri-
bution of the distance from the base of a uniformly distributed random point in a
regular simplex with height 1, see Figure 2.

Putting `n = mn − ρd, we have `n ↓ 0 a.s., and

(4.1) `n+1 =

`n(1− hn+1), w.p. (d+ 1)
(

1− ρd
mn

)d
,

`n, w.p. 1− (d+ 1)
(

1− ρd
mn

)d
.

The theorem follows from Lemma 2.3 with δ = d, c = d+ 1 and an = md
n ↓ ρdd. �

4.2. The limit distribution of the center. Let cn denote the center of the
regular simplex Kn. In this subsection we determine the limit distribution of cn.

As we emphasized previously the limit distribution of n1/d(mn − ρd) is not af-
fected if we start from any smaller regular simplex, in particular which has height
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2ρd. However, this is not true for the limit distribution of the center cn. To handle
the process we have to assume that the change regions are disjoint, and so in each
step the center can only move towards one of the vertices, or stay.

In order to investigate the limit distribution of the centroid, we can consider
the thinned (centroid, height) process (c̃n, m̃n), skipping the steps when nothing

happens. Put ˜̀n = m̃n − ρd.
Since the disjoint change regions have the same volume, in each step the center

moves towards any of the vertices with the same probability 1/(d+1), according to

the change region in which the chosen point falls. The size of the shift is d
d+1 ·˜̀nhn+1,

where ˜̀nhn+1 is the distance of the chosen point from the base of the change region,
see Figure 2. Thus

c̃n+1 = c̃n +
d

d+ 1
˜̀
nhn+1eξn+1 ,˜̀

n+1 = ˜̀
n(1− hn+1),

(4.2)

where h1, h2, . . . are independent beta(1, d) random variables, ξ1, ξ2, . . . are inde-
pendent, uniformly distributed random variables on {0, 1, . . . , d}, and the initial

conditions are c̃0 = 0 and ˜̀0 = ρd.
To obtain a more symmetric description of the center process we introduce the

barycentric coordinates. The center of the limiting simplex falls in K̂ := 1
d+1K,

i.e. in a regular simplex with height ρd.

Put êi = 1
d+1ei, that is ê0, . . . , êd are the vertices of K̂. To parametrize the

center we may use barycentric coordinates in terms of K̂. That is, for c̃n we have

c̃n =
∑d
i=0 λ

i
nêi, with

∑d
i=0 λ

i
n = 1, λin ≥ 0, i = 0, 1, . . . , d. It is well-known that

this parametrization is unique. Put Λ̃n = (λ0
n, . . . , λ

d
n) ∈ Rd+1. We can rewrite

(4.2) in terms of the barycentric coordinates of c̃n. After some calculation we have

Λ̃n+1 = Λ̃n +
d

d+ 1
˜̀
nhn+1vξn+1

,

˜̀
n+1 = ˜̀

n(1− hn+1),

(4.3)

where vj is the constant −1 vector, except its jth coordinate being d. The initial

values are Λ̃0 = (1/(d+ 1), . . . , 1/(d+ 1)), ˜̀0 = ρd.
Before stating the theorem, we define the multidimensional Dirichlet distribu-

tion. Let a0, . . . , ad be positive numbers. The random vector X = (X0, . . . , Xd) has
Dirichlet(a0, . . . , ad) distribution, if its components are nonnegative, X0+. . .+Xd =
1, and (X1, . . . , Xd) has density function

Γ(a0 + . . .+ ad)

Γ(a0) . . .Γ(ad)
(1− x1 − . . .− xd)a0−1xa1−1

1 . . . xad−1
d ,

on the set {(x1, . . . , xd) : xi ∈ (0, 1), i = 1, . . . , d;
∑d
i=1 xi ≤ 1}.

Theorem 4.2. The barycentric coordinates of the center of the limit simplex have
the Dirichlet(d/(d+ 1), . . . , d/(d+ 1)) distribution.

Proof. Let Λ̃ be the barycentric coordinates of the center of the limit. From (4.3)
we obtain that

Λ̃ = Λ̃0 +
1

d+ 1

∞∑
n=0

(1− h1) . . . (1− hn)hn+1vξn+1 .
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Rearranging we get

Λ̃ = h1

(
1

d+ 1
vξ1 + Λ̃0

)
+ (1− h1)

[
Λ̃0 +

1

d+ 1

∞∑
n=1

(1− h2) . . . (1− hn)hn+1vξn+1

]
.

Notice that the infinite sum in brackets is equal in distribution to Λ̃ and it is

independent of h1 and ξ1. Since 1
d+1vi + Λ̃0 = ui, where (ui)i=0,...,d are the usual

unit vectors in Rd+1, we obtain the distributional equality

(4.4) Λ̃
D
= huξ + (1− h)Λ̃,

where on the right-hand side ξ, h, Λ̃ are independent. Applying now Theorem 1.1
in [8] (or the results in the proof of Theorem 3.4 in [10]) with Y = h ∼ beta(1, d),

and B = uξ ∼
∑d
i=0

1
d+1δui , we obtain the theorem. �

5. Regular polygons with an odd number of vertices

Let k be an odd positive integer, and assume k ≥ 5. Let K be a regular k-gon
with circumradius 1, centroid (0, 0), such that (0, 1) is a vertex and the side v1v2

is parallel to the x-axis. We denote the vectors pointing from the origin to the
vertices of K in the counterclockwise order by v1, . . . , vk. (To avoid confusion, we
distinguish between points and vectors.) Put K0 = K, and consider the process as
before. For simplicity we usually omit k from our notation, and assume that k is
fixed, odd, and clear from the circumstances.

Obviously, Kn is a polygon for each n, and since it is the intersection of translated
copies of K, its sides are parallel to the sides of K. However, note that Kn is
not necessarily a k-gon. For convenience, we are still going to consider Kn as a
(possibly degenerated) k-gon with the following definitions. Let `i and `′i be two
parallel support lines of Kn with equations `i : 〈x , vi〉 = αi and `′i : 〈x , vi〉 = α′i,
where αi > α′i. Now, we denote Kn ∩ `i by Ai = Ai(n) and we consider it as the
ith vertex of Kn. Similarly, Kn ∩ `′i is denoted by si = si(n) and we call it the
ith side of Kn. Note that with these notation some vertices might coincide and
correspondingly some sides might degenerate into a point. We also introduce the
ith height of Kn as mi(n) = αi − α′i. We put mn = (m1(n),m2(n), . . . ,mk(n)),
and mn = maximi(n).

The radius of the inscribed circle of K is denoted by ρk = cos(π/k). We also
introduce the notion of change region here:

Ri(n) = Kn ∩ {x | 〈x , vi〉 ≥ α′i + ρk}, i = 1, 2, . . . , k.

Intuitively, the ith side moves, if we choose the next random point in Ri. (Note
that, this is not entirely true, since a degenerated side can move in other ways.)

Obviously, if pn+1 /∈
⋃k

1 Ri(n), then Kn+1 = Kn.
We define

K∞ =

∞⋂
n=0

Kn,

the so called limit object.
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Lemma 5.1. The limit object K∞ is a possibly degenerated, closed k-gon whose
sides are parallel to the sides of K. Furthermore, the maximal height of K∞ is
exactly ρk almost surely.

Proof. Since K∞ is the intersection of closed half-planes with possible outer normals
−v1, . . . ,−vk, it follows, that K∞ is a closed, possibly degenerated k-gon with sides
parallel to the sides of K.

First we show that no height of K∞ is larger than ρk. Suppose that m1(∞) > ρk,
in this case R1(∞) is of positive area. Observe that no point was selected from
R1(∞) by definition, which is a contradiction.

Next we prove that the maximal height of K∞ is at least ρk. Clearly, it is
enough to see that mn ≥ ρk for every n. This follows from the observation that if

pn+1 /∈
⋃k

1 Ri(n), then Kn+1 = Kn. �

In the following lemma we show that Kn always contains a small circle of radius
1/10. In particular this implies that the area of Kn (and thus the area of K∞
as well) is uniformly bounded from below by π/100. To ease the notation we put
p0 = 0.

Lemma 5.2. Let k ≥ 5, and assume that

Kn =

n⋂
j=0

(K + pj),

where pj ∈
⋂j−1
m=0(K + pm) for all j. Then Kn contains a circle of radius 1/10.

Proof. Denote by B the unit circle centered at the origin, which is the circumcircle
of K by definition. Also by definition ρkB is the incircle of K. We consider

Bn =

n⋂
j=0

(B + pj),

and we observe that Kn ⊂ Bn holds for all n.
We claim that for all j = 0, 1, . . . , n, we have pj ∈ Bn. By definition pj ∈ Kj ⊂

Bj . Suppose that pj /∈ Bn, then there exists an index n0 with j < n0 ≤ n such that
pj /∈ (B + pn0

), and thus pn0
/∈ (B + pj). But by definition pn0

∈ Bn0
⊂ (B + pj),

a contradiction.
We obtained that Bn is the intersection of the unit circles B + pj such that all

centers pj are contained in Bn. This readily implies that the minimal width of
Bn is at least one. Then Blaschke’s Theorem (see [12, p. 18, Th. 2–5.]) implies
that there exists x such that B/3 + x ⊆ Bn. Obviously for all j ≤ n we have that
x ∈ 2B/3 + pj , and thus ρk ≥ ρ5 = cosπ/5 ≈ 0.809 > 2/3 + 1/10 implies that for
all j ≤ n we have B/10 + x ⊂ K + pj , which proves the statement. �

Lemma 5.3. There exists a δk > 0 such that if every height of Kn is smaller than
ρk + δk, then the change regions Ri are pairwise disjoint.

Proof. We show that Ri and Rj are disjoint for every i 6= j.
First we show that the statement is true for adjacent regions. Suppose that

X ∈ R1 ∩R2 (see Figure 3).
According to Figure 3 we draw two lines parallel to `′1 and `′2 respectively that

are at distance exactly ρk from the point X, these two lines meet in the point M .
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A(k+3)/2

A(k+5)/2

A(k+1)/2

s2

s1

X

≥ ρk ≥ ρk

M

ρk + δk

Figure 3. Adjacent change regions are disjoint

Obviously, there exists a δk > 0 (depending only on k), such that XM = ρk + δk.
Readily follows that m(k+3)/2 ≥ ρk + δk, a contradiction.

Next we prove that if 2 ≤ m ≤ (k − 1)/2, and X ∈ R1 ∩Rm, then X ∈
⋂m

1 Rj .
This obviously implies the statement of the lemma. We proceed by induction on
m. For m = 2 we are done. Now we assume that the statement is true till m− 1,
and we prove it for m.

Pick X ∈ R1 ∩ Rm. We may assume that X /∈ Rj for any j = 2, 3, . . . ,m − 1,
otherwise we would be done by applying the hypothesis twice. We may also assume
that we changed the coordinate system such that the slope of `′m is positive, the
slope of `′1 is negative, and the bisectors of the line `′1 and `′m are vertical and
horizontal, see Figure 4.

Draw the translated copy KX of K whose center is X, the incircle of KX is of
radius ρk and of center X. Consider the vertices A(k+1)/2+1 and A(k+1)/2+m−1 of
Kn, and the vertices A′(k+1)/2+1 and A′(k+1)/2+m−1 of KX . From the assumptions it

clearly follows that the ‘horizontal distance’ (the difference of the x coordinates) of
A(k+1)/2+1 and A(k+1)/2+m−1 is larger than the horizontal distance of A′(k+1)/2+1

and A′(k+1)/2+m−1. But this is a contradiction, since the sides s1, s2, . . . , sm−1 form

a fixed angle with the x-axis, and each of them is at most as long as the side
length of K, and thus the horizontal distance of A′(k+1)/2+1 and A′(k+1)/2+m−1 is

maximal. �

A configuration is called reduced if the change regions are disjoint. In a reduced
state it is possible to follow the process. That gives the importance of the following
simple corollary which readily follows from the fact that mn is componentwise
monotone decreasing and mn ↓ ρk.
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A(k+1)/2+m

A(k+1)/2+m−1

A(k+1)/2+m−2

sm

sm−1

A(k+1)/2+2

A(k+1)/2+1

A(k+1)/2

s1

s2

X
ρk

A′(k+1)/2+m−1 A′(k+1)/2+1

Figure 4. Non-adjacent change regions are disjoint

A1(n)

R1(n)

A2(n)

R2(n)

A3(n)
R3(n)

A4(n)

R4(n)

A5(n)

R5(n)

Figure 5. Change regions in a reduced state

Corollary 5.4. The process a.s. reaches a reduced state in a random number of
steps. After reaching a reduced state, the process always stays in a reduced state.



14 PÉTER KEVEI AND VIKTOR VÍGH

6. The pentagon

In this section we consider the pentagon process. This is the simplest case when
not only the position, but also the shape of the limit object is random. We show
that exactly one height of the limit object is ρ5, which allows us to determine the
speed of the process.

6.1. On the limit pentagon. First we prove that the process cannot degenerate
in the following sense.

Lemma 6.1. Kn is always a pentagon with equal inner angles.

Proof. The key observation is that the directions of the sides of Kn are prescribed,
thus the only thing we have to show that a side cannot disappear. Suppose the
opposite, and seek a contradiction. Let Kn be the first non-pentagonal state, and
first assume that it is a quadrilateral and the side A1A5 disappears. It easy to
calculate the inner angles of Kn, three of them equal the inner angle of a regular
pentagon, 3π/5 (at vertices A2, A3 and A4), while the fourth one is π/5 (at the
vertex A1). Also note, that the side lengths of Kn cannot exceed the side length
of K. Thus Kn is contained in a deltoid, see Figure 6, where s is the side length
of K. This implies that the heights m2 and m4 of Kn are at most s · sin(π/5) =
2 · sin2(π/5) ≈ 0.69. A simple argument shows that we may assume that A4 was a
vertex of Kn−1, but A1 and A2 were not. This implies that the side A1A2 comes
from K (more precisely, A1A2 ⊂ pn+∂K), and so m4 ≥ ρ5. But this is not possible,
since m4 < ρ5, a contradiction. Similar argument settles the case when Kn is a
triangle. �

By Corollary 5.4 in a random number of steps we reach a reduced state, and
so as in the simplex case we may and do assume that the process starts from a
reduced state. It also follows that in a reduced state the change regions are always
triangles.

Note that if the random point falls in R1 then beside m1, the opposite heights
m3 and m4 also decrease. Some calculation shows that if m1 decreases by x then
m3 and m4 both decrease by c x, with

(6.1) c =

√
5− 1

2
,

being the reciprocal of the golden ratio. We say that mi and mj are competing
heights, if mi > ρ5, mj > ρ5, and they are not adjacent.

To describe the dynamics of the process we define the following vectors: v1 =
(1, 0, c, c, 0), v2 = (0, 1, 0, c, c), v3 = (c, 0, 1, 0, c), v4 = (c, c, 0, 1, 0), and v5 =
(0, c, c, 0, 1). With this notation, if in a reduced state in the (n + 1)th step the
random point falls in Ri(n), then

(6.2) mn+1 = mn − hn(mi(n)− ρ5)vi,

where h1, h2, . . . are independent beta(1, 2) random variables, i.e. h is the distribu-
tion of the distance from the base of a uniformly chosen point in a triangle with
height 1. That is, hn+1(mi(n) − ρ5) is the distance of pn+1 and the side of Ri(n)
which is opposite to Ai(n). The probability of this event is |Ri(n)|/|Kn|, where | · |
is the area.

Lemma 6.2. The limit pentagon cannot have non-adjacent heights equal to ρ5.



ON THE DIMINISHING PROCESS OF BÁLINT TÓTH 15

A1 s

s

A2

A4

A3
m4

Figure 6. The deltoid containing Kn

Proof. Emphasizing that the process can be at any reduced state we omit the index
n.

Assume that there is a state with at least 2 competing heights greater than ρ5.
Let, say, m1 be the maximum height, which has a competing pair, say m3. If the
maximum height has no competing pair greater than ρ5 than its change has no
affect on the two competing heights. Thus m1 will change eventually. So we may
and do assume that m1 is the largest height.

Case 1: c(m1 − ρ5)/2 > m3 − ρ5, with c defined in (6.1). Then the probability
that in the next change step the uniform random point falls in R1 is greater than
1/5, and given this the probability thatm1 decreases at least with (m1−ρ5)/2 equals
P{h > 1/2} = 1/4. In this case m3 decreases below ρ5, and so the probability of
this event is at least 1/20.

Case 2: c(m1 − ρ5)/2 ≤ m3 − ρ5. The probability that in the next change step
the random point falls in R3 is

(m3 − ρ5)2∑5
i=1(mi − ρ5)2

+

≥ (m3 − ρ5)2

5(m1 − ρ5)2
≥ c2

20
.

We show that with positive probability we end up in a state corresponding to Case
1. In the next step

m′1 = m1 − ch(m3 − ρ5),

m′3 = m3 − h(m3 − ρ5).
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We want an h ∈ (0, 1), such that c(m′1 − ρ5)/2 > m′3 − ρ5. Some calculation shows
that this happens if and only if

h >
1

1− c2

2

(
1− c

2

m1 − ρ5

m3 − ρ5

)
,

where the right side is at most

1− c
2

1− c2

2

=
3
√

5− 5

2
.

The probability of this event is at least

P

{
h >

3
√

5− 5

2

}
=

(7− 3
√

5)2

4
≈ 0.0213.

So we are almost in Case 1, but it can happen that m′1 is not maximal. Notice that

m′1 − ρ5

m1 − ρ5
=
m1 − ρ5 − c(m3 − ρ5)h

m1 − ρ5
≥ 1− c,

which implies that the probability of choosing in R1 in the next change step is at
least (1− c)2/5.

So we showed that starting from any state with at least two competing heights
greater than ρ5, the probability that in two change steps one of them decreases
below ρ5 is at least

c2

20

(7− 3
√

5)2

4

(1− c)2

20
≈ 2.97 · 10−6.

This proves that the process cannot have this configuration for infinite number of
steps. �

Lemma 6.3. There is no non-regular pentagon with equal angles, in which the two
largest heights are consecutive.

Proof. As a first step we prove a somewhat surprising result that provides a linear
relationship between any four heights of the pentagon. We assume that m1,m3 and
m4 are given, and we express m2 as a linear combination of the previous three. To
simplify the calculations, we place the pentagon into a new coordinate system such
that A1 is the origin and A1A2 agrees with the x-axis, and the whole pentagon
lies in the upper half plane. Recall that −v1 = (cos(3π/10), sin(3π/10)), −v2 =
(cos(7π/10), sin(7π/10)), −v3 = (cos(11π/10), sin(11π/10)), −v4 = (0,−1), −v5 =
(cos(−π/10), sin(−π/10)) are the outer normals of the sides, as we defined ear-
lier. From the setup the equations of `′3 = A5A1 and `′4 = A1A2 readily fol-
low: `′3 : 〈−v3, (x, y)〉 = 0 and `′4 : y = 0. Using the definition of m1 we obtain
`′1 : 〈−v1, (x, y)〉 = m1. And again by the definition of m3 and m4, A4 is on the line
`4 : y = m4 and A3 is on `3 : 〈−v3, (x, y)〉 = −m3. We can express A3 and A4 by
solving the system of equations:

A3 =

(
m1 sin 11π

10 +m3 sin 3π
10

sin 8π
10

,
m1 cos 11π

10 +m3 cos 3π
10

− sin 8π
10

)
,

A4 =

(
m1 −m4 sin 3π

10

cos 3π
10

, m4

)
.
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Now, we can find the equation of `′2 and `′5. After suitable simplifications, intro-

ducing the golden ratio λ = (
√

5 + 1)/2, we obtain

`′2 : cos
7π

10
x+ sin

7π

10
y = −m1 + λm4,(6.3)

`′5 : cos
−π
10

x+ sin
−π
10

y = −m1 + λm3.(6.4)

Thus A2 = ((−m1 + λm3)/ cos(−π/10), 0), and to obtain m2 we need to calculate
the distance between A2 and `′2:

m2 =

∣∣∣∣cos
7π

10
· −m1 + λm3

cos(π/10)
+m1 − λm4

∣∣∣∣ =

∣∣∣∣( 1

λ
+ 1

)
m1 −m3 − λm4

∣∣∣∣
= |λm1 −m3 − λm4|.

From (6.3) and (6.4) it readily follows that m3 > m1/λ and λm4 > m1, hence

(6.5) m2 = −λm1 +m3 + λm4.

Now, suppose that m1 and m2 are the two largest heights. If m2 6= m3, then
we have a contradiction by (6.5). If m2 = m3, then since m1 and m2 are the two
largest, it follows that m1 = m2 = m3 = m4, and hence the pentagon is regular. �

As a consequence of the previous lemmas we obtain

Theorem 6.4. The limit pentagon has exactly one height equal to ρ5 a.s.

Remark. With a rather tedious case analysis one can prove that for any height of
the limit pentagon mi ≥ ρ5 + 2− 4c ≈ 0.33688, which is sharp.

6.2. Rapidness of the pentagon process. In the previous section we proved
that the limit pentagon has exactly one height equal to ρ5 a.s., i.e. after finite
number of steps Kn has only one height greater than ρ5. This observation allows
us to prove some asymptotic results for the speed, however, as the area of the limit
is now random, we cannot prove limit theorem, only upper and lower bounds.

Let t∗ denote the maximum and t∗ the minimum of the area of the possible limit
pentagons. Note that t∗ ≥ π/100 by Lemma 5.2. Then we have the following.

Theorem 6.5. For any x > 0

e−
x2

t∗ ≤ lim inf
n→∞

P

{√
n tan

3π

10
(mn − ρ5) > x

}

≤ lim sup
n→∞

P

{√
n tan

3π

10
(mn − ρ5) > x

}
≤ e−

x2

t∗ .

Moreover,

lim
n→∞

E

√
n tan

3π

10
(mn − ρ5) =

E
√
t

4
√
π
,

where t denotes the area of the limit pentagon.

Proof. Put tn = |Kn|. Once there is only one height greater than ρ5 the limit
pentagon is determined and so is its area limn→∞ tn = t. The area of the only
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Figure 7. The evolution of
√
n(mn − ρ7) for 1800 iterations of

the heptagon process

non-empty change region |Ri(n)| = (mn − ρ5)2 tan 3π
10 . This means that the height

process `n = mn − ρ5 behaves as

`n+1 =

{
`n(1− hn+1), w.p.

`2n
tn

tan 3π
10 ,

`n, w.p. 1− `2n
tn

tan 3π
10 ,

where h1, h2, . . . are iid beta(1, 2) random variables. Since tn ↓ t a.s., by Lemma
2.3 with δ = 2, an = tn, c = tan(3π/10) we obtain that given t we have for any
x > 0

P


√
n tan 3π

10

t
(mn − ρ5) > x

∣∣∣ t
→ e−x

2

,

or

P

{√
n tan

3π

10
(mn − ρ5) > x

∣∣∣ t}→ e−
x2

t .

The convergence of moments also holds (as in Lemma 2.3), in particular

E

√
n tan

3π

10
(mn − ρ5) = E

[
E

[√
n tan

3π

10
(mn − ρ5)

∣∣∣ t]]

→ E

∫ ∞
0

e−
x2

t dx =
E
√
t

4
√
π
,

and the theorem is proved. �

7. Rapidness estimates

In general the polygon process is too complicated to say anything more about
the limit object than Lemma 5.1. According to this lemma the maximal height of
the limit object is ρk. Using stochastic majorization and minorization we are able
to determine the order of the convergence.

Theorem 7.1. Let k ≥ 5 be an odd integer. For any x > 0 we have

0 < lim inf
n→∞

P{
√
n(mn − ρk) > x} ≤ lim sup

n→∞
P{
√
n(mn − ρk) > x} < 1.

Proof. Let mn = (m1(n), . . . ,mk(n)) be the height vector, mn its maximum, and

An =
∑k
i=1 |Ri(n)| the area of the change regions. By Corollary 5.4 we may and

do assume that the change regions are already disjoint. The probability of no
change is the probability that the random point does not fall in

⋃
Ri(n), that

is P{mn+1 = mn} = 1 − An/|Kn|. The probability of change is An/|Kn|, in
particular |Ri(n)|/|Kn| is the probability that we choose the point in Ri(n). In
this case mi(n+ 1) = mi(n)−hin+1(mi(n)− ρk), and all the other heights decrease
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at most hin+1(mi(n)−ρk), where hin+1(mi(n)−ρk) is the distance from the base of

a uniformly chosen point in Ri(n), and so hin+1 is the distance from the base of a
uniformly chosen point in Ri(n)(mi(n) − ρk)−1, i.e. we scale the change region to
have height 1. So we have that in case of change mn+1 ≥ mn − hin+1(mn − ρk)1,

where 1 stands for the constant 1 vector, and so mn+1 ≥ mn − hin+1(mn − ρk).

We want to construct simple processes, serving as lower and upper bound for
mn. In order to do so we recall same basic properties of stochastic ordering. For
random variables X and Y we say that X is stochastically larger than Y (Y ≤st X)
if P{X ≤ x} ≤ P{Y ≤ x} for any x ∈ R. This is equivalent to the condition
Ef(X) ≥ Ef(Y ) for any increasing function f . For random vectors the definition
is somewhat trickier. In Rk a set U is an upper set if for x1 ∈ U , x2 ≥ x1

imply x2 ∈ U . For k-dimensional random vectors X and Y we have Y ≤st X if
P{X ∈ U} ≥ P{Y ∈ U} for any upper set U . This is equivalent to the condition
Ef(X) ≥ Ef(Y) for any f : Rk → R that is increasing in each argument. We refer
to Shaked and Shanthikumar [11] (chapter 1.A and chapters 6.A and 6.B).

The first step is to obtain a stochastic majorant and minorant for hin for any type
of scaled change regions. Let us fix such a region, and let tx be the area of those
points in the region, which are farther than 1−x from the base. If h is the distance
of the random point from the base then P{h > 1 − x} = tx/t1. The angle of the
upper vertex is at most k−2

k π, and the corresponding angle bisector is orthogonal
to the base, so for all x ∈ [0, 1]

tx ≤
1

2
x 2x tan

(k − 2)π

2k
= x2 tan

(k − 2)π

2k
.

By Lemma 5.2 a disc of radius 1/10 is contained in Kn, which together with con-
vexity imply that the angle of the upper vertex is at least 2 arcsin 1

20 . Therefore

tx ≥ x2 tan

(
arcsin

1

20

)
=: x2δ1.

Summarizing, we have

x2δ1 ≤ P{h > 1− x} =
tx
t1
≤ x2c1,

where c1 = tan (k−2)π
2k >> 1. Note that δ1 in the lower bound does not depend on

k. For x ≥ 0 put

H∗(x) = min{x2c1, 1},(7.1)

H∗(x) =

{
x2δ1, x ∈ [0, 1),
1, x ≥ 1,

(7.2)

for the distribution functions of the stochastic minorant and majorant of 1− h.
The previous reasoning also shows that

δ1(mi(n)− ρk)2
+ ≤ |Ri(n)| ≤ c1(mi(n)− ρk)2

+,

and so

(7.3) δ1(mn − ρk)2 ≤ An ≤ kc1(mn − ρk)2.

By the trivial bound and by Lemma 5.2 we have the following upper and lower
bounds for the area:

(7.4) π/100 ≤ |Kn| ≤ |K| ≤ π.
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The lower bound. Using (7.3) and (7.4) the change probability can be esti-
mated as

An
|Kn|

≤ 100kc1
π

(mn − ρk)2 =: c2(mn − ρk)2.

Let us define the process

(7.5) m′n+1 =

{
m′n − (m′n − ρk)hn+1, w.p. c2(m′n − ρk)2,
m′n, w.p. 1− c2(m′n − ρk)2,

where h1, h2, . . . , iid, and 1 − h1 has distribution function H∗ in (7.1). We claim
that

(7.6) P{mn+1 ≤ x|mn = y} ≤ P{m′n+1 ≤ x|m′n = y}.

Indeed, m′n decreases with higher probability, and if it decreases, the decrement is
greater. Putting `′n = m′n − ρk

`′n+1 =

{
`′n(1− hn+1), w.p. c2(`′n)2,
`′n, w.p. 1− c2(`′n)2.

We can write `′n+1 = min{`′n, Un+1}, with Un+1 independent of `′n and having
distribution function

P{Un+1 ≤ x} =


c1c2x

2, x < `′n/
√
c1,

c2 (`′n)2, x ∈ [`′n/
√
c1, `

′
n),

1, x ≥ `′n.

If V has distribution function

(7.7) H̃(x) = min
{
c1c2x

2, 1
}
,

and it is independent of `′n then min{`′n, Un+1} ≥st min{`′n, V } for any n and `′n.

For V1, V2, . . . iid with distribution function H̃, put V n = min{V1, . . . , Vn}. We
obtained that for all n

P{`′n+1 ≤ x|`′n = y} ≤ P{V n+1 ≤ x|V n = y},

combining this with (7.6) we deduce

(7.8) P{`n+1 ≤ x|`n = y} ≤ P{V n+1 ≤ x|V n = y},

where `n = mn − ρk. We claim that these inequalities imply the unconditional
inequality.

The latter process can be written as (we assume that the process starts from a
sufficiently small state)

V n+1 =

{
V nkn+1, w.p. c1c2V

2
n,

V n, w.p. 1− c1c2V 2
n,

where k1, k2, . . . are iid beta(2, 1) random variables. Short calculation gives that

P
{
V n+1 ≤ x|V n = y

}
=

{
1, x ≥ y,
c1c2x

2, x < y,

which is decreasing in y for any fix x.



ON THE DIMINISHING PROCESS OF BÁLINT TÓTH 21

Let us assume that `0 = V 0, and it is sufficiently small. The law of total
probability and (7.8) imply P{`1 ≤ x} ≤ P{V 1 ≤ x}. Assume that for any x > 0,
P{`n ≤ x} ≤ P{V n ≤ x} for some n ≥ 1. Then

P{`n+1 ≤ x} =

∫
P{`n+1 ≤ x|`n = y} dP{`n ≤ y}

≤
∫

P{V n+1 ≤ x|V n = y} dP{`n ≤ y}

≤
∫

P{V n+1 ≤ x|V n = y} dP{V n ≤ y}

= P{V n+1 ≤ x},

where we used the law of total probability, (7.8), the induction hypothesis, the
monotonicity of the conditional probabilities, and that for two distribution functions
F,G, such that F (x) ≤ G(x), and for a monotone decreasing function f we have∫
fdF ≤

∫
fdG ([11] chapter 1.A). So we proved that V n ≤st `n for every n.

For the asymptotic behavior of V n we have

P
{√

c1c2
√
nV n > x

}
→ e−x

2

,

and since V n ≤st `n, we obtain

lim inf
n→∞

P
{√

c1c2
√
n(mn − ρk) > x

}
≥ e−x

2

.

In particular we have

E
[√
c1c2
√
n(mn − ρk)

]
=

∫ ∞
0

P
{√

c1c2
√
n(mn − ρk) > x

}
dx

≥
∫ ∞

0

P
{√

c1c2
√
nV n > x

}
dx

→
∫ ∞

0

e−x
2

dx,

where at the last convergence we used the uniform integrability of
√
nV n.

The upper bound. Now we turn to the construction of the upper bound
process. If the random point falls in the change region Ri(n) then we have mi(n+
1) = mi(n) − hin+1(mi(n) − ρk), and the other heights may change or may not.

In any case mn+1 ≤ mn − eih
i
n+1(mi(n) − ρk), where ei is the ith standard, k

dimensional unit vector. The probability of this event is |Ri(n)|/|Kn| for which by
(7.3) and (7.4)

|Ri(n)|
|Kn|

≥ δ1
π

(mi(n)− ρk)2
+ =: c3(mi(n)− ρk)2

+.

Instead of hi we put the stochastically smaller h, for which 1 − h has distribution
function H∗ defined in (7.2). Note that for this h we have P{h = 0} = 1 − δ1.
We define the k-dimensional process m̂n as follows. Let i ∈ {1, 2, . . . , k} such that
n+ 1 ≡ i (mod k). Then define

(7.9) m̂n+1 =

{
m̂n − eihn+1 (m̂i(n)− ρk) , w.p. c3(mi(n)− ρk)2

+,
m̂n, w.p. 1− c3(mi(n)− ρk)2

+,

where h1, h2, . . . are iid and 1− h1 has distribution function H∗ in (7.2), that is in
each step at most one component decreases, and component i can decrease only in
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steps `k + i, ` ∈ N. From the construction it is clear that for each y ∈ Rk, and for
each upper set U

(7.10) P{mn+1 ∈ U |mn = y} ≤ P{m̂n+1 ∈ U |m̂n = y}.

Now we show that P{m̂n+1 ∈ U |m̂n = y} is a monotone increasing function
of y for any fixed upper set U . To do so, let n + 1 ≡ i (mod k), and define
ui(y) = inf{u : (y1, . . . , yi−1, u, yi+1, . . . , yk) ∈ U}. We may assume that y ∈ U ,
m̂i(n) > ρk and ui(y) > ρk, otherwise the statement is obvious. Recall that in one
step only coordinate i can change, and so by (7.9) we have

P{m̂n+1 ∈ U |m̂n = y} = 1−P{m̂n+1 6∈ U |m̂n = y}
= 1−P{m̂i(n+ 1) < ui(y)|m̂n = y}

= 1− c3(yi − ρk)2 P

{
1− h < ui(y)− ρk

yi − ρk

}
= 1− c3δ1(ui(y)− ρk)2

+.

By the properties of the upper set we have that y ≤ y′ implies ui(y) ≥ ui(y
′)

and so the conditional probability is monotone increasing. As in the case of the
lower estimation this allows us to prove the majorization mn ≤st m̂n as follows: If
m0 = m̂0 in distribution, then we have the majorization for n = 1, and if it is true
for some n ≥ 1, then for any upper set U

P{mn+1 ∈ U} =

∫
P{mn+1 ∈ U |mn = y}dP{mn ≤ y}

≤
∫

P{m̂n+1 ∈ U |m̂n = y}dP{mn ≤ y}

≤
∫

P{m̂n+1 ∈ U |m̂n = y}dP{m̂n ≤ y}

= P{m̂n+1 ∈ U},

where we used the law of total probability, (7.10), the induction hypothesis, the
monotonicity of the conditional probabilities, and that for two distribution functions
F,G, such that F (x) ≥ G(x), and for a monotone increasing function f we have∫
fdF ≤

∫
fdG ([11, chapter 6.B]).

Putting

(7.11) H(x) = min{δ1c3x2, 1},

as before we see that

m̂i(n)− ρk = min{Wi,j : j = 1, 2, . . . ; k(j − 1) + i ≤ n},

where {Wi,j : i = 1, 2, . . . , k; j ∈ N} are iid random variables with distribution

function H. We have

P

{√
δ1c3n max

1≤i≤k
min{Wi,j : j = 1, 2, . . . ; k(j − 1) + i ≤ n} ≤ x

}
=

k∏
i=1

[
1−P

{√
δ1c3nmin{Wi,j : j = 1, 2, . . . ; k(j − 1) + i ≤ n} > x

}]
→
(

1− e−
x2

k

)k
.
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∼ c1x2 ∼ c2xx

Figure 8. Change regions of different shapes

Figure 9.
√

100(m100 − ρ7) for 200 outcomes of the heptagon
process (the minimal value is 0.215, the maximal value is 1.078)

This, together with the stochastic majorization mn ≤st m̂n implies that

lim sup
n→∞

P
{√

δ1c3n(mn − ρk) > x
}
≤ 1−

(
1− e−

x2

k

)k
.

In particular we have

E
[√

δ1c3n(mn − ρk)
]

=

∫ ∞
0

P
{√

δ1c3n(mn − ρk) > y
}

dy

≤
∫ ∞

0

P
{√

δ1c3n(m̂n − ρk > y
}

dy

→
∫ ∞

0

[
1−

(
1− e−

y2

k

)k]
dy.

�

8. Concluding remarks

The major difference between regular polygons with odd and even number of
vertices hides in the fact that while in the odd case the change regions are always
triangles, in the even case change regions might be trapezoids or (in the degenerated
case) triangles, hence their area might be of different order (see Figure 8). We
conjecture that in the latter case the ‘typical’ change regions are trapezoids, which
would imply that the speed of the process is 1/n. (Compare with Theorem 7.1,
where we obtained 1/

√
n for the speed in the odd case.) This conjecture is well

supported by numerical experiments. We conclude the paper with the results of
some computer simulations, see Figure 9 and Figure 10. It is transparent that

√
n

and n are the right normalizations, respectively.
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Figure 10. 100(m100 − ρ8) for 200 outcomes of the octagon
process (the minimal value is 0.236, the maximal value is 5.381)

Appendix

Proof of Lemma 2.1. To prove part (i) note that the distributional equality means

F (x) = F (a)F (x/a),

for all 0 ≤ x ≤ a. The monotonicity of F easily implies that the solution has the
stated form for some δ > 0. The ‘if’ part follows by simple calculation.

We turn to part (ii). For any x ∈ [1/2, 1]

P{I(X ≤ 1/2) = 0, max{X, 1−X} > x} = P{X > x} = 1− F (x),

and

P{I(X ≤ 1/2) = 0}P{max{X, 1−X} > x}
= (1− F (1/2)) (1− F (x) + F (1− x−)) .

Solving the equation for F we obtain the statement. �

Proof of Lemma 2.3. After some calculation one obtains that given `n and an,

`n+1
D
= min{`n, Y }, where Y is a nonnegative random variable, such that Y δ is

uniformly distributed on [0, an/c].

For any ε ≥ 0 let U (ε), U
(ε)
1 , U

(ε)
2 , . . . be iid nonnegative random variables, such

that

P{U (ε) ≤ x} = xδ
c

a+ ε
, x ∈

[
0, [(a+ ε)/c]1/δ

]
,

that is (U (ε))δ ∼ Uniform[0, (a+ ε)/c]. Put

M (ε)
n = min{U (ε)

1 , U
(ε)
2 , . . . , U (ε)

n }.

Since an is decreasing, Y ≥st U
(0), therefore

`n ≥st min{U (0)
1 , U

(0)
2 , . . . , U (0)

n } = M (0)
n .

As

P

{(cn
a

)1/δ

M (0)
n > x

}
→ e−x

δ

,

we have

lim inf
n→∞

P

{(cn
a

)1/δ

`n > x

}
≥ lim
n→∞

P

{(cn
a

)1/δ

M (0)
n > x

}
= e−x

δ

.

To prove the reverse inequality, let us fix ε > 0, β > 0. Given that an ≤ a + ε
we have Y ≤st U

(ε), and thus given that abβnc < a+ ε we have

`n ≤st min
{
U

(ε)
1 , U

(ε)
2 , . . . , U

(ε)
b(1−β)nc

}
=: M

(ε)
b(1−β)nc.
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By the law of total probability

P

{(cn
a

)1/δ

`n > x

}
= P

{(cn
a

)1/δ

`n > x
∣∣∣abβnc < a+ ε

}
·P
{
abβnc < a+ ε

}
+ P

{(cn
a

)1/δ

`n > x
∣∣∣abβnc ≥ a+ ε

}
·P
{
abβnc ≥ a+ ε

}
≤ P

{(cn
a

)1/δ

M
(ε)
b(1−β)nc > x

}
+ P

{
abβnc ≥ a+ ε

}
.

By the assumption an ↓ a > 0 a.s., so the second term goes to 0, while from extreme
value theory (see e.g. [4], p.192) we have

lim
n→∞

P

{( c
a
n
)1/δ

M
(ε)
b(1−β)nc > x

}
= e−x

δ a
a+ε (1−β),

that is, by the stochastic dominance

lim sup
n→∞

P

{( c
a
n
)1/δ

`n > x

}
≤ e−x

δ a
a+ε (1−β).

Since ε > 0 and β > 0 are as small as we want, we obtain

lim sup
n→∞

P

{( c
a
n
)1/δ

`n > x

}
≤ e−x

δ

,

and the convergence in distribution is proved.
Once we have the distributional convergence, to prove the moment convergence

it is enough to show that {nα/δ`αn} is uniformly integrable (see e.g. [4] Theorem
25.12). Since an is bounded, for some η > 0 we have an ≤ a+ η a.s. for all n ≥ 1,

and thus `n ≤st M
(η)
n . Therefore

P{n1/δ`n > x} ≤ P{n1/δM (η)
n > x} =

(
1− xδ

n

c

a+ η

)n
≤ e−x

δ c
a+η ,

and the uniform integrability follows. �
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